

Report on Detailed Site Investigation (Contamination)

Meadowbank Public School Repurpose to Open Space Meadowbank Public School, Ryde

> Prepared for School Infrastructure New South Wales (SINSW)

> > Project 99856.01 February 2021

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	99856.01	Document No.	R.002.Rev0
Document title	Report on Detailed Sit	te Investigation (Co	ntamination)
	Meadowbank Public S	School Repurpose to	o Open Space
Site address	Meadowbank Public S	School, Ryde	
Report prepared for	School Infrastructure	New South Wales (SINSW)
File name	99856.01.R.002.Rev0)	

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Nicola Warton	T Wright	25 February 2021

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	-	Roman Pilch, School Infrastructure New South Wales (SINSW)

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Millather	25 February 2021
Reviewer 25 February 2021	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	duction	1	
2.	Scope	be of Work	2	
3.	Site Ir	Information	3	
4.	Enviro	ronmental Setting	4	
5.	Previo	ious Reports and Site History	5	
	5.1	Contamination Assessment - DP (2009)	5	
	5.2	Preliminary Site (Contamination) Investigation - DP (2020)	5	
6.	Prelin	minary Conceptual Site Model	6	
7.	Samp	pling and Analysis Quality Plan	9	
	7.1	Data Quality Objectives	9	
	7.2	Soil Sampling Rationale	9	
	7.3	Groundwater Sampling Rationale	10	
8.	Site A	Assessment Criteria	10	
9.	Resul	ults	10	
	9.1	Field Work Results	10	
	9.2	Laboratory Analytical Results	11	
10.	Discu	ussion	12	
	10.1	Soils	12	
			10.1.1 Site Suitability	12
		10.1.2 Preliminary Waste Classification	12	
	10.2	Groundwater	14	
	10.3	Data Quality Assurance and Quality Control	15	
11.	Concl	clusions and Recommendations	15	
12.	Refer	rences	16	
13.	Limita	ations	16	

Appendices

Appendix A:	Drawing and Notes about this Report
Appendix B:	Data Quality Objectives
Appendix C:	Field Work Methodology
Appendix D:	Site Assessment Criteria
Appendix E:	Summary of Results
	Table E1: Summary of Results of Soil Analysis;
	Table E2: Summary of Waste Classification Assessment; and,
	Table E3: Summary of Results of Water Analysis.
Appendix F:	Borehole Logs
Appendix G:	Laboratory Certificates of Analysis, Chain of Custodies and Sample Receipt Advices
Appendix H:	Results of Statistical Analysis and Chromatograms
Appendix I:	Data Quality Assessment

Report on Detailed Site Investigation (Contamination) Meadowbank Public School Repurpose to Open Space Meadowbank Public School, Ryde

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by School Infrastructure New South Wales (SINSW) to complete this Detailed Site Investigation (Contamination) (DSI) for the repurposing of Meadowbank Public School (the site) to an open space. The investigation was undertaken in accordance with DP's proposal SYD201095 dated 8/10/2020. The site is shown on Drawing 1, Appendix A.

It is understood that the Meadowbank Public School will be relocated to a nearby campus as part of wider education upgrades in the Ryde Local Government area. The existing school grounds are proposed to be developed to a new community outdoor space once the school has relocated. Specific details of the development have not been confirmed at this early stage.

The objective of the DSI is to assess the suitability of the site for the proposed development and whether further investigation and / or management is required. It is understood that the report will be used to support the initial master planning phase and concept / schematic design process of the project. Therefore, a limited sampling programme was adopted for the DSI.

DP previously completed a report titled Preliminary Site (Contamination) Investigation (DP, 2020) for SINSW to assess the potential for contamination at the site based on past and present land uses. The PSI recommended an intrusive soil and groundwater investigation comprising of a limited sampling program prior to building demolition and additional sampling post demolition. A preliminary waste classification was also recommended depending on the proposed development design and whether any excavation and removal of spoil from site was required. This current DSI addresses the recommended limited sampling program prior to demolition and the preliminary waste classification.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

The PSI was undertaken concurrently with an intrusive geotechnical investigation¹ reported separately.

¹ Douglas Partners Pty Ltd, 'Report on Geotechnical Assessment, Meadowbank Public School Repurposed to Open Space, Meadowbank Public School, Ryde, dated February 2021, reference: 99856.00.R.002 (DP, 2021).

2. Scope of Work

The scope of works for the intrusive investigation comprised the following:

- Review of the results of the PSI report (DP, 2020), including the preliminary conceptual site model;
- Review of the proposed development details;
- Preparation of the field work and safety plans;
- Review of service plans, scanning of test locations for buried services and surveying of test locations using a dGPS;
- Drilling of nine boreholes for geotechnical purposes to the top of bedrock (BH01 to BH08 and BH11B) and an additional four boreholes for contamination purposes (BH09 to BH12) to a depth of 0.5 m into natural soil, 3 m or prior refusal;
- Supervision of the drill rig, logging of the sub surface profile and sampling;
- Installation of one groundwater well at borehole BH05 to a depth of 2.8 m;
- Collection of soil samples for contamination testing from all boreholes at regular intervals and where signs of contamination were observed;
- Laboratory testing of selected soil samples at a NATA accredited laboratory for various combinations of the following potential contaminants / analytes:
 - o Heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (HM);
 - o Total recoverable hydrocarbons (TRH);
 - o Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Phenols;
 - o Asbestos (~40 g samples);
 - o pH; and,
 - o Cation exchange capacity (CEC).
- Development of the groundwater well by removing a minimum of three well volumes or until the well was dry;
- After allowing the well to recharge, collection of a groundwater sample from the well using low-flow sampling techniques. Groundwater depths were recorded prior to sampling;
- The recovered water sample was analysed for metals, TRH, BTEX, PAH, OCP, OPP, PCB and phenols. Given the limited volume of water available for sampling, only routines levels of PAH, OCP, OPP and PCB were analysed for by the laboratory;
- Field sampling and laboratory analysis generally consistent with standard environmental protocols, including a quality assurance and quality control (QA / QC) plan consisting of 10% replicate sampling, trip spikes, trip blanks, appropriate chain-of-custody procedures and laboratory QA / QC testing;
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);

- Data Quality Assessment;
- Update of the conceptual site model (CSM); and,
- Preparation of this DSI report outlining the methods and results of the investigation, including an assessment of the risk from contamination, advice on the type and potential extent of contaminated soils (if identified) and matters which need to be addressed in future stages of the design and delivery of the project. The report also outlines recommendations for further assessment.

3. Site Information

A summary of site information is presented in Table 1 below.

Site Address	Meadowbank Public School 4-6 Thistle Street, Ryde	
Legal Description	Lot 1, DP135062 Lot 1, DP437180 Lot 1, DP120850	
Approximate Area	1.0 ha	
Zoning	Zone SP2- Educational Establishment	
Local Council Area	City of Ryde	
Current Use	Primary School	
Surrounding Uses	North - Low density residential	
	East - Medium density residential	
	South - City of Ryde Operational Centre and medium density residential	
	West - Low density residential	

Table 1: Site Information

The site location and layout are shown on Drawing 1, Appendix A.

4. Environmental Setting

Table 2: Environmental Setting of the Site

Regional Topography	The site is located in an area of sloping hills and valleys. The area generally slopes to the south-west towards Parramatta River. The local high point is located approximately 550 m to the north east, at 70 m AHD (Australian height datum). The site is located in a shallow gully between two gently sloping ridge lines extending down towards the river from the local high point.
Site Topography	The site slopes generally down to the south west, with the north eastern side of the site at approximately 20 m AHD, sloping gently down to the south western side at approximately 16 m AHD.
Soil Landscape	Based on the Sydney 1:100 000 Soil Landscape sheet, the site is underlain by two erosional landscape groups, the Gymea group on the north western half of the site and the Glenorie group on the south eastern half of the site.
	The Gymea group is typically within an undulating landscape with low rolling hills on Hawkesbury Sandstone.
	Similarly, the Glenorie group is also typically within an undulating landscape but is underlain by Wianamatta Shales.
Geology	Based on the Sydney 1:100 000 Geology Sheet the site is mostly underlain by Triassic aged Hawkesbury Sandstone. A small portion of the northern boundary of the site, along Thistle Street is underlain by Triassic aged Ashfield Shale of the Wianamatta Group.
	In some areas, there is a transitional geological unit between the Hawkesbury Sandstone and Ashfield Shale known as the Mittagong Formation. The Mittagong Formation generally comprises interbedded shale, laminite and fine-grained sandstone.
Acid Sulfate Soils (ASS)	A review of the NSW ASS risk map and local environmental plan indicates the site is located in a Class 5 area. ASS are not typically found in Class 5 areas, but are generally located within 500 m of Class 1, 2, 3 or 4 areas.
Surface Water	Parramatta River is the closest surface water receptor, located approximately 500 m south and down gradient of the site.
Groundwater	A search of the publicly available registered groundwater bore database on 29 October 2020 indicated that there were no registered groundwater bores within 500 m of the site. The nearest groundwater bores down gradient of the site were approximately 550 m south west of the site, adjacent to Parramatta River. These wells were in a cluster of four wells and were recorded as monitoring bores. Given their use and proximity to the river, the bores are not considered to be a significant receptor. Based on the regional topography the anticipated flow direction of groundwater beneath the site is to the south, towards Parramatta River, the likely receiving surface water body for the groundwater flow path.

5. **Previous Reports and Site History**

The following previous reports are relevant to the current investigation:

- DP (2009), 'Building the Education Revolution, Meadowbank Primary School- DET No. 3863, Contamination Assessment', Project ref: 71182.27-2, dated 10 July 2009 (DP, 2009); and
- DP (2020), 'Report on Preliminary Site (Contamination) Investigation for Meadowbank Public School Repurpose to Open Space, Meadowbank Public School, Prepared for School Infrastructure New South Wales (SINSW)', DP ref: 99856.01.R.001.Rev0, dated 8 December 2020 (DP, 2020).

5.1 Contamination Assessment - DP (2009)

DP has previously undertaken a contamination assessment for a portion of the site as part of the *'Building the Education Revolution'* Project in 2009².

The investigation was undertaken for the proposed covered outdoor learning area and library which involved the removal of the existing library (demountable building) and was limited to the area of the proposed development.

DP (2009) involved an intrusive investigation comprising four boreholes (1 to 4) and three dynamic cone penetration (DCP) tests (DCP tests undertaken for geotechnical purposes). Selected samples of fill underwent laboratory analysis and the reported analyte concentrations were below the previously adopted site assessment criteria. The fill material was preliminarily classified as general solid waste and the natural material was classified as virgin excavated natural material (VENM).

No asbestos was observed on the ground surface during the site walkover and no visible asbestos (or potential asbestos) was noted in the borehole logs.

5.2 Preliminary Site (Contamination) Investigation - DP (2020)

DP undertook a preliminary site (contamination) investigation (PSI) for the site in December 2020 and reported the findings in DP (2020). The PSI comprised a desktop study to assess the potential for contamination based on past and present land uses of the site. Additionally, the investigation was used to inform and refine the proposed intrusive investigation and / or management with regard to the proposed development. The PSI was to be used to support the initial master planning phase and concept / schematic design process of the project.

The results of the desktop study and site history information searches suggested that the site has been owned by the NSW Government and used as a school since at least the 1950s. Information on historical aerial photographs suggested that the site had continued to be developed since the 1950's into the school as it was observed during the site walkover. A chicken coop located at the southern boundary of the site was also observed during the site walkover. Prior to becoming a school, the site appeared to have been vacant since at least the 1930s and it is unknown what the site may have been used for prior to this.

Detailed Site Investigation (Contamination), Meadowbank Public School Repurpose to Open Space, Meadowbank Public School, Ryde

² DP (2009), Building the Education Revolution, Meadowbank Primary School- DET No. 3863, Contamination Assessment, Project ref: 71182.27-2, dated 10 July 2009.

Therefore, based on the findings of the PSI it was considered that the risk of significant or widespread contamination at the site was low to moderate, given the risk of asbestos on the ground or in the fill, the potential for other contaminants in the fill and some possible low level application of herbicides and pesticides around the site.

As a result, DP (2020) recommended that in order to achieve an outcome of stating that the site is suitable or can be made suitable for the proposed development (as required under SEPP 55), an intrusive investigation be undertaken. This was to include the following:

- An assessment of the contaminant risk in the soil and groundwater relative to the proposed land use. Given an intrusive investigation was proposed to be undertaken prior to demolition of the buildings on site, a limited sampling program was recommended with additional sampling following demolition to assess the areas within the footprints of the buildings; and
- A preliminary waste classification (depending on whether the proposed development design involves any excavation and spoil removal from site).

Additionally, DP (2020) also recommended that as the buildings on the site were considered likely to contain hazardous building materials given their age, an updated hazardous material building survey and subsequent appropriate removal or management of any identified hazardous materials (such as lead paint, synthetic mineral fibres (SMF) and PCB) in accordance with relevant legislation and guidelines should be undertaken prior to renovation or demolition works.

Minimal change has occurred on site since the DP (2020) investigation was undertaken.

6. Preliminary Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways).

Potential Sources and Areas of Environmental Concern

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

- S1: Fill: Associated with levelling and forming the site;
 - COPC include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), phenols and asbestos.
- S2: Previous and current general site maintenance (including low level application of pesticides and herbicides and upkeep of chicken coop);
 - o COPC include OPP, OCP, metals (arsenic, lead, mercury) and herbicides.

- S3: Former buildings and renovations of current buildings on-site;
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.

Potential Receptors

The following potential human receptors have been identified:

- R1: Current users [primary school];
- R2: Construction and maintenance workers;
- R3: End users [public (open space)]; and
- R4: Adjacent site users [residential and council workers].

The following potential environmental receptors have been identified:

- R5: Surface water [Parramatta River];
- R6: Groundwater; and
- R7: Terrestrial ecology.

Potential Pathways

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and / or vapours;
- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies (Parramatta River);
- P5: Leaching of contaminants and vertical migration into groundwater; and,
- P6: Contact with terrestrial ecology.

Summary of Potentially Complete Exposure Pathways

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S3) and receptors (R1 to R7) are provided in below Table 3.

Source and COPC	Transport Pathway	Receptor	Risk Management Action	
S1: Fill COPC: Metals, TRH, BTEX, PAH, OPP, OCP,	P1: Ingestion and dermal contact	 R1: Current users [primary school] R2: Construction and maintenance workers R3: End users [public (open space)] 	An intrusive investigation was recommended by DP (2020) to assess possible	
PCB and asbestos.	P2: Inhalation of dust and/or vapours	R4: Adjacent site users [residential and council workers]	contamination including testing of the soil and	
S2: Previous and current general site maintenance	 P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies 	R5: Surface water [Parramatta River]	groundwater. This could be undertaken in a staged manner whereby the soil	
metals and herbicides*.	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	results may inform the need for a groundwater	
	P6: Contact with terrestrial ecology	R7: Terrestrial ecology	assessment.	
S3: Former buildings and renovations of current buildings on site	 P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours 	 R1: Current users [primary school] R2: Construction and maintenance workers R3: End users [public (open space)] R4: Adjacent site users [residential and council workers] 	To complement the asbestos register previously generated, a hazardous building materials survey, DP (2020) recommended to update the current register and identify any SMF, lead paint and PCB in the buildings.	
COPC: Asbestos, SMF, lead (in paint) and PCB	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	As mentioned above, an intrusive investigation was recommended by DP (2020) to assess the potential impact on the soil and, if impacted, asses the risk to groundwater	

Table 3: Summary of Potentially Complete Exposure Pathways

*Herbicide contamination is most likely to occur via spills where they are stored and mixed / diluted. Therefore, contamination would most likely have occurred in maintenance related buildings and not the grounds and fields. As the school is currently operating, sampling of areas where herbicides may have been stored / mixed was not possible and therefore samples collected during the assessment were not analysed for herbicides.

7. Sampling and Analysis Quality Plan

7.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process is outlined in Appendix B.

7.2 Soil Sampling Rationale

Based on the CSM and DQO the following sampling rationale was adopted.

A systematic sampling strategy based on NSW EPA *Contaminated Sites, Sampling Design Guidelines* (NSW EPA, 1995) was utilised to determine borehole locations which was based on areas of access.

Table A of NSW EPA (1995) recommends a minimum of 21 sampling points for a site of 1 ha for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. A limited sampling program was adopted for the investigation due to the preliminary nature of the investigation comprising of a total of 12 test locations (in addition to the tests undertaken as part of DP (2009). The locations were selected based on geotechnical requirements, site access and to maximise coverage across the site.

The rationale for the borehole locations are outlined in Table 4 below.

Borehole	Rationale
BH1 to BH8	Undertaken for geotechnical purposes
BH9 to BH12	Environmental boreholes undertaken for additional site coverage
BH11B	Undertaken adjacent to BH11 to collect an additional bulk sample for geotechnical purposes
BH5	Combined environmental and geotechnical borehole converted into a groundwater monitoring well. Located on the down gradient boundary of the site.

Table 4: Borehole Location Rationale

Borehole locations are shown on Drawing 1, in Appendix A.

Soil samples were collected from each borehole at the surface and at depths of approximately 0.2 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

The general sampling methods are described in the field work methodology, included in Appendix C.

7.3 Groundwater Sampling Rationale

In order to assess the current groundwater contamination status at the site and evaluate whether historical and current land uses have impacted on groundwater, sampling from the groundwater monitoring well was undertaken. As outlined in Table 4 above, the rationale for the location of the well was due to the borehole being on the hydraulically down gradient boundary of the site. The results from BH05 will be used to evaluate whether the historical land uses of the site have impacted on groundwater quality as well as provide data on the concentrations of contaminants in groundwater exiting the site.

The general sampling methods are described in the field work methodology, included in Appendix C.

8. Site Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM (Section 6) which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic recreational land use scenario. The derivation of the SAC is included in Appendix D and the adopted SAC are listed on the summary analytical results tables in Appendix E.

9. Results

9.1 Field Work Results

The borehole logs for this assessment are included in Appendix F. Table 5 below outlines the general sub surface profile as recorded in the borehole logs. It is noted that the subsurface profile is similar to the conditions encountered in the DP (2009).

Material	General Description	
Asphaltic Concrete	Asphaltic concrete overlying road base was observed at BH01, BH03, BH04 and BH10 from surface to depths of between 0.03 m bgl and 0.2 m bgl	
Mulch	Mulch comprising woodchips was observed at BH02, BH05, BH07 and BH12 from surface to depths of between 0.05 m bgl and 0.1 m bgl.	
	Fill was observed at the remaining boreholes (BH06, BH09, BH11 and BH11B) to depths of between 0.2 m bgl and 1.3 m bgl	
Fill	Fill was typically silty clay and clay topsoil with some areas covered in wood chip mulch. Sandy clay fill was observed at borehole 11 and 11B with inclusions of concrete and tile fragments, and sandstone gravel.	

 Table 5: Summary of the Subsurface Ground Profile

Material	General Description
Residual Soil, Clay or Sandy Clay	Medium to high plasticity, firm to stiff / stiff to very stiff residual clays to depths of between 1.0 m bgl and 4.9 m bgl. It was noted that sandy clay overlying sandstone bedrock was observed beneath clay layers in boreholes terminating in sandstone bedrock.
Bedrock	Shale and sandstone from depths of between 2.0 m bgl and 4.9 m bgl to depths of between 3.1 m bgl and 4.95 m bgl (extent of investigation).

There were no other apparent records of visual or olfactory evidence (e.g., staining, odours, free phase product) to suggest the presence of contamination within the soils or groundwater observed in the investigation.

No free groundwater was observed during drilling of the boreholes, however groundwater seepage was observed in BH06 during auger drilling at 4.5 m bgl. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

Groundwater levels were gauged on 28 January 2021 using an electronic oil / water interface meter prior to developing the wells and again on 2 February 2021 prior to sampling. The measured standing water level in BH05 prior to sampling was 2.33 m bgl (13.77 m AHD).

Given the limited volume of groundwater available in the well, the stabilised groundwater field parameters were unable to be recorded prior to sampling. No light non-aqueous phase liquid (LNAPL) was observed whilst sampling.

9.2 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables in Appendix E:

- Table E1: Summary of Results of Soil Analysis;
- Table E2: Summary of Waste Classification Assessment; and,
- Table E3: Summary of Results of Water Analysis.

The laboratory certificates of analysis together with the chain of custody and sample receipt information are provided in Appendix G.

10. Discussion

10.1 Soils

10.1.1 Site Suitability

A summary of the soil results and assessment against the SAC are shown in Table E1, Appendix E.

The analytical results for BTEX, phenols, OCP, OPP and PCB in all samples were below the practical quantification limit (PQL). Additionally, no asbestos was detected in the samples analysed.

The analytical results for metals in the samples were below the PQL and / or the SAC.

The analytical results for TRH and PAH in the samples were below the PQL and/or the SAC with the exception of the following:

- TRH >C10-C16 in sample BH02/ 0.4-0.5 m at 150 mg/kg, exceeded the ESL of 120 mg/kg.
 - o The breakdown of the TRH detected was provided in a chromatogram by Envirolab Services (ELS) and indicated that the fractions identified at BH02 were likely to be an oil but not a light petroleum oil. Given the presence of tree roots in the strata layer and a root identified from 0.5 m bgl to 0.8 m bgl, it is possible the TRH detections are associated with natural oils in the tree roots and surrounding soil. A copy of the chromatogram and advice from ELS are included in Appendix H; and
 - o Furthermore, DP notes that the vegetation, fauna and insect activity in the area around BH02 did not display significant signs of stress, and as such, it is considered unlikely that the exceedance is causing an adverse effect to the ecology present.
- B(a)P in samples BH07/0.1-0.2 (5.1 mg/kg and 6.0 mg/kg in the laboratory duplicate) and BH11/0.9-1.0 (1.3 mg/kg) exceeded the ESL of 0.7 mg/kg;
 - o It is noted however, that the B(a)P ESL is a low reliability value. Higher reliability screening levels have been published in CRC CARE *Risk-based Management and Remediation Guidance for Benzo(a)pyrene* (CRC CARE, 2017). The high reliability value of 33 mg/kg (or ranging from 21 mg/kg to 135 mg/kg) for fresh B(a)P suggests that the concentrations of B(a)P detected at the site are unlikely to pose an unacceptable risk to terrestrial ecology and therefore the exceedances are not considered to be of concern as the concentrations are well below the high reliability value of 33 mg/kg.
- B(a)P TEQ in samples BH07/0.1-0.2 (7.5 mg/kg and 9.1 mg/kg in the laboratory duplicate) which exceeded the HIL-C of 3 mg/kg. As the exceedance is 2.5 times the SAC, it is considered a hotspot requiring further investigation. DP notes that leachability testing was undertaken for PAH and were all <PQL, indicating that the concentration of B(a)P TEQ is not leachable and based on the borehole, is likely to be associated with the fill layer (0.1 m to 0.3 m bgl).

10.1.2 Preliminary Waste Classification

EPA (2014) contains a six-step procedure for determining the type of waste and the waste classification. Part of the procedure, for materials not classified as special waste or pre-classified waste, is a comparison of analytical data initially against contaminant threshold (CT) values specific to a waste category. Alternatively, the data can be assessed against specific contaminant concentration (SCC) thresholds when used in conjunction with toxicity characteristic leaching procedure (TCLP) thresholds.

The CT, SCC, and TCLP values relevant to this waste classification are shown in Table E2 (Appendix E).

The following Table 6 presents the results of the six-step procedure outlined in EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill at the site.

Step	Comments	Rationale
1. Is the waste special waste?	No	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes;
		Asbestos was not detected by the analytical laboratory.
2. Is the waste liquid waste?	No	The fill comprised a soil matrix.
3. Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
		The natural material, if classified as VENM, is pre- classified as General Solid Waste (non-putrescible).
4. Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
 Determining a wastes classification using chemical assessment 	Conducted	Refer to Table E2 in Appendix E.
Is the waste putrescible or non- putrescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Table 6: Six Step Classification Procedure

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials.

As shown in Table E2 (Appendix E) the contaminant concentrations for the analysed fill samples were within the contaminant thresholds (CT1s) for General Solid Waste (GSW), with the exception of the following:

- Nickel in sample BH04/ 0.1-0.2 (41 mg/kg) which exceeded the CT1 criteria for nickel (40 mg/kg);
- B(a)P in sample BH11/ 0.9- 1.0 (1.3 mg/kg) which exceeded the CT1 criteria for B(a)P (0.8 mg/kg); and
- B(a)P in sample BH07/ 0.1-0.2 (5.1 mg/kg and 6.0mg/kg in the laboratory duplicate) which exceeded the CT2 criteria for B(a)P (3.2 mg/kg).

Additional toxicity characteristic leaching procedure (TCLP) analysis was conducted on the above samples to gain an understanding of the leachable characteristics and hence the potential to impact the groundwater. The results were within the contaminant thresholds SCC1 and TCLP1 for GSW.

Consequently, the preliminary classification for the fill material encountered in the boreholes is General Solid Waste (non-putrescible).

Additionally, building materials such as concrete and tile fragments were observed in the fill which are considered indicative of the possible presence of HBM, including asbestos. If asbestos is encountered during excavation the waste classification of the material will need to be updated to be disposed of as special waste (asbestos).

The above classifications of the fill is preliminary in nature and will need to be confirmed with a visual inspection and additional sampling (where required) prior to offsite disposal.

The reported concentrations of the natural soils sampled from across the site were generally within the ANZECC (1992) background levels with the exception of the following: BH02/0.4-0.5 (detected TRH C10-C14), BH06/0.4-0.5 (detected B(a)P, fluoranthene and pyrene) and BH07/1-1.1 (detected benzo(a)anthracene, chrysene, fluoranthene and pyrene). It is noted that the total PAH concentrations were within published background levels although individual species as listed above were detected.

As such, it is possible that some of the natural soils in and around these locations are not able to be classified as VENM and would be classified as general solid waste (CT1) with the potential for classification as excavated natural material (ENM) following further testing.

Additionally, TRH C29-C36, fluoranthene and pyrene was detected in BH10/0.1-0.2. However, based on the chromatogram and comments from ELS, the TRH fraction is likely due to the presence of asphalt in the sample. Based on these results and the borehole logs, the asphalt is likely from the overlying asphaltic concrete. Given this, the natural soils in BH10 may be classified as VENM subject to appropriate segregation of the overlying asphalt.

Similarly the detection of TRH at BH02 should be confirmed as it may be associated with naturally occurring oils surrounding the tree roots and mulch in the area and a VENM classification should be confirmed following investigation, otherwise a formal classification provided.

Nonetheless, with the above possible exceptions, the natural soils comprising of red brown, orange brown and grey clays encountered in the remaining boreholes are considered likely to be classified as VENM.

10.2 Groundwater

A summary of the groundwater results and assessment against the SAC is shown in Table E3, Appendix E.

The analytical results for TRH, PAH, OCP, OPP, PCB, phenol and BTEX. were below the PQL in the sample analysed. The results suggest that groundwater beneath the site has not been significantly impacted by organic contaminants.

The analytical results for metals were general below the PQL and/or SAC with the exception of zinc at 80 μ g/L in the sample (BH05), exceeding the ANZG (2018) marine water guideline for the protection of slightly to moderately disturbed marine water aquatic ecosystems of 15 μ g/L.

Based on our experience in the area, the concentrations of metals in groundwater are considered likely to be attributed to the background concentrations that would be associated with the mineralogy of the clay / fractured rock shale.

10.3 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA / QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

11. Conclusions and Recommendations

Based on the site observations in this investigation the subsurface profile encountered at the site comprised of topsoil and / or fill to depths of between 0.2 m bgl to 1.3 m bgl, underlain by natural clay.

The laboratory analytical results for the limited soil and groundwater sampling undertaken, indicated generally low levels of contamination at the site.

The groundwater results across the site indicate the contaminated fill is not impacting upon the groundwater at the site.

Based on the results of this DSI combined with the results of DP (2020), the risk of widespread gross chemical contamination is considered to be low and therefore the site can be made suitable (from a contamination perspective) for the proposed open space, subject to the following:

- As the buildings on the site are considered likely to contain hazardous building materials given their age, an updated hazardous material building survey and subsequent appropriate removal or management of any identified hazardous materials (such as lead paint, SMF and PCB) in accordance with relevant legislation and guidelines should be undertaken prior to renovation or demolition works;
- Following demolition, in the areas within the building footprints (including both the permanent and demountable buildings):
 - Inspection of the building footprints by an Environmental Consultant, for any signs of contamination;
 - Additional testing around BH07; and
 - Additional sampling and testing in the demolished building footprint areas to assess the suitability of the material to remain on site (or as a confirmation of the waste classification prior to excavation and off-site disposal, if required). This testing should include analysis of COPC as identified in the CSM including herbicides within the footprint of the groundskeeping area of the school buildings. The results of this additional investigation will inform whether management and/or remediation for the material is required.

The current results indicate that the fill is likely to be classified as general solid waste (non-putrescible) and the natural soils which underlie the site are mainly likely to be classified as VENM. These classifications are preliminary and subject to confirmation (visual and / or analytical) prior to removal of soils from the site.

If removal of natural soils around BH02, BH06, BH07 and BH10 is required, further investigation should be undertaken to either confirm whether the soils can be classified as VENM or the extent of the soils which cannot be classified as VENM and provide a formal waste classification of the material (noting that an ENM classification could also be explored).

12. References

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

13. Limitations

Douglas Partners (DP) has prepared this report (or services) for this project at Meadowbank Public School in accordance with DP's proposal SYD201095 dated 8 October 2020 and acceptance received from SINSW dated 28 October 2020. The work was carried out under the Standard Form Agreement SINSW01423/20 dated 28 October 2020. This report is provided for the exclusive use of SINSW for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

Page 17 of 17

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (environmental / groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as concrete and tile were, however, located in previous below-ground filling and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints, or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

Appendix A

Drawing

Notes About This Report

Develos Dertroro	CLIENT: Schools Infrastructure NSW		TITLE:	Site and Borehole Location Plan
Douglas Partners	OFFICE: Sydney	DRAWN BY: LT		Meadowbank Public School Repurpose to Open Space
Geotechnics Environment Groundwater	SCALE: 1:800 @ A3	DATE: 24.02.2021		Meadowbank Public School, Ryde

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Data Quality Objectives

Appendix B Data Quality Objectives Meadowbank Public School, Ryde

B1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

	Step	Summary		
1: S		The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be repurposed into public open space.		
	problem	A preliminary conceptual site model (CSM) has been prepared (Section 6) for the proposed development.		
		The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.		
2:	Identify the	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 6). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Section 8.		
	of the study	The decision is to establish whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.		
3:	Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentration of COPC identified in the CSM (Section 6) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Appendix D.		
4:	Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 11.		
5:	Develop the	The decision rule is to compare all analytical results with SAC (Appendix D, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.		
	approach (or decision rule)	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).		
		Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic		

Step	Summary		
	mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I.		
	Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and poses a potentially unacceptable risk to receptors (null hypothesis).		
6: Specify the	Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) complies with human health and environmental SAC and as such, does not pose a potentially unacceptable risk to receptors (alternative hypothesis).		
	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.		
performance or acceptance criteria	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:		
onona	• As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e.,95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL shall subsequently be screened against the corresponding SAC.		
	• The statistical assessment will only be able to be applied to certain datasets, such as those obtained via systematic sampling. Identification of areas for targeted sampling will be via professional judgement and errors will not be able to have a probability assigned to them.		
7: Optimise the design for	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.		
obtaining data	Further details regarding the proposed sampling plan are presented in Section 7.2.		

Douglas Partners Pty Ltd

Appendix C

Field Work Methodology

Appendix C Field Work Methodology Meadowbank Public School, Ryde

C1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

C2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the auger at regular intervals within the soil profile and where signs of contamination were observed;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain-of-custody documentation.

C3.0 Groundwater Sampling

C3.1 Monitoring Well Installation

Monitoring wells are constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well is backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well is completed with a hydrated bentonite plug of at least 0.5 m thick and then compacted drill cuttings to the surface, finished with cast iron gatic cover set in concrete.

C3.2 Monitoring Well Development

Groundwater monitoring wells are developed as soon as practicable following well installation. The purpose of well development is to remove sediments and/or drilling fluid introduced to the well during drilling and to facilitate connection of the monitoring well to the aquifer. The wells are developed by bailing to remove a minimum of five well volumes, or until dry.

C3.3 Groundwater Sampling

Peristaltic Pump

Groundwater sampling is carried out in accordance with DP standard operating procedures. Groundwater samples are collected using a low flow peristaltic pump via the micro-purge (minimal drawdown) method. The sampling method is described as follows:

- Measure the static water level using an electronic interface probe and record the thickness of any LNAPL (if encountered);
- Decontaminate the interface probe and cable between monitoring wells by rinsing in a diluted Decon-90 solution and then rinsing in demineralised water;
- Lower the well-dedicated tubing into the well then clamped at a level estimated to be 1 m below the top of the water column (provided the depth of the pump is within the screened section) or to the approximate mid-point of the well screen;
- Set the pump at the lowest rate possible to minimise drawdown of the water column;
- Measure physical parameters by continuously passing the purged water through a flow cell; and
- Following stabilisation of the field parameters, collect samples in laboratory-prepared bottles minimising headspace within the sample bottle and cap immediately.

Decontaminate the interface probe and pump between monitoring wells by rinsing in a diluted Decon-90 solution and then rinsing in demineralised water.

Sample Handling

The general groundwater sample handling and management procedures comprise:

- Label sample containers with individual and unique identification details, including project number and sample location;
- Place the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain-of-custody documentation.

Douglas Partners Pty Ltd

Appendix D

Site Assessment Criteria

Appendix D Site Assessment Criteria Meadowbank Public School, Ryde

D1.0 Introduction

D1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013);
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011);
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018); and
- ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

D1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: recreational.
 - o Corresponding to land use category 'C', defined as public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.
- Soil type: sand.

D2.0 Soils

D2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table D1 and Table D2.

Contaminant	HIL-C		
Metals			
Arsenic	300		
Cadmium	90		
Chromium (VI)	300		
Copper	17 000		
Lead	600		
Mercury (inorganic)	80		
Nickel	1200		
Zinc	30 000		
РАН			
B(a)P TEQ	3		
Total PAH	300		
Phenols			
Phenol	40 000		
Pentachlorophenol	120		
OCP			
DDT+DDE+DDD	400		
Aldrin and dieldrin	10		
Chlordane	70		
Endosulfan	340		
Endrin	20		
Heptachlor	10		
НСВ	10		
Methoxychlor	400		
OPP			
Chlorpyrifos	250		
PCB			
PCB	1		

Table D1: Health Investigation Levels (mg/kg)

Contaminant	HSL-C
SAND	0 m to <1 m
Benzene	NL
Toluene	NL
Ethylbenzene	NL
Xylenes	NL
Naphthalene	NL
TRH F1	NL
TRH F2	NL

Table D2: Health Screening Levels (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table D3.

Contaminant	DC HSL-C	DC HSL-IMW
Benzene	120	1100
Toluene	18 000	120 000
Ethylbenzene	5300	85 000
Xylenes	15 000	130 000
Naphthalene	1900	29 000
TRH F1	5100	82 000
TRH F2	3800	62 000
TRH F3	5300	85 000
TRH F4	7400	12 000

Table D3: Health Screening Levels for Direct Contact (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

IMW intrusive maintenance worker

D2.2 Asbestos in Soil

Based on the CSM and / or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation / assessment as an initial screen.

D2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table D5, with inputs into their derivation shown in Table D4.

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	
рН	5.47	Calculated average obtained from site specific testing
CEC	7.47 cmol₀/kg	Calculated average obtained from site specific testing
Clay content	1%	A conservative clay content in the absence of site specific test results
Organic carbon content	0.1%	A conservative organic carbon content in the absence of site specific test results
Iron	0	A conservative iron content in the absence of site specific test results
Traffic volumes	high	
State / Territory	NSW	

 Table D4: Inputs to the Derivation of the Ecological Investigation Levels

Contaminant	EIL- Urban Residential and Open Space (A-B-C)							
Metals								
Arsenic	100							
Copper	150							
Nickel	90							
Chromium III	200							
Lead	1100							
Zinc	360							
РАН								
Naphthalene	170							
ОСР								
DDT	180							

Table D5: Ecological Investigation Levels (mg/kg)

D2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table D7.

Table D6: Ecological Screening Levels (mg/kg)

Contaminant	Soil Type	ESL- Urban Residential and Open Space (A-B-C)
Benzene	Coarse	50
Toluene	Coarse	85
Ethylbenzene	Coarse	70
Xylenes	Coarse	105
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Coarse	300
TRH F4	Coarse	2800
B(a)P	Coarse	0.7

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_{6} - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

D2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

The adopted management limits are in Table D7.

Contaminant	Soil Type	ML- Residential, Parkland and Public Open Space (A-B-C)
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	2500
TRH F4	Coarse	10 000

Table D7: Management Limits (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} including BTEX TRH F2 is TRH > C_{10} - C_{16} including naphthalene

D3.0 Groundwater

D3.1 Introduction

The groundwater investigation levels (GIL) used for interpretation of the groundwater data (as a Tier 1 assessment) have been selected based on the potential risks posed from contamination sourced from the site to receptors at or down-gradient of the site, as identified by the conceptual site model (CSM). The receptors, exposure points and pathways are summarised in Table D8.

Receptor	Location	Exposure Point	Exposure Pathway
Surface water aquatic ecosystem	Parramatta River- down-gradient from site.	Receiving surface water body at the groundwater discharge point.	Exposure to contaminants.
Occupants of buildings	On site and down- gradient from site.	Enclosed buildings (including if there are any proposed for the development e.g. an amenities block).	Inhalation of VOC (including TRH and BTEX) overlying VOC impacted groundwater via the vapour intrusion pathway.

Table D8: Summary of Potential Receptors and Potential Risks

The rationale for the selection of GIL is in Table D9.

Receptor / Beneficial Use	GIL	Source	Comments / Rationale					
Aquatic ecosystem	DGV	ANZG (2018)	Marine water 99% LOP for bioaccumulative contaminants 95% LOP for non-bioaccumulative contaminants					
Building occupants (vapour intrusion)	HSL	NEPC (2013)	2 m to <4 m					

Table D9:	Groundwater	Investigation	Level	Rationale
-----------	-------------	---------------	-------	-----------

Notes: DGV default guideline value % LOP percentage level of protection of species HSL health screening level

D3.2 Groundwater Investigation Levels for Aquatic Ecosystems

The DGV for the protection of aquatic ecosystems derived from ANZG (2018) are in Table D10.

Table D10:	Groundwater Investigation	Levels for Protection	of Aquatic Ecosystems (µg/L)
------------	---------------------------	-----------------------	-----------------------------	---

Ana	llyte	ANZG (2018) Trigger Values for Marine water					
Metals	Arsenic (V)	24					
motalo	Cadmium	5.5					
	Chromium (VI)	4.4					
	Copper	1.3					
	Lead	4.4					
	Mercury (total)	0.40					
	Nickel	70					
	Zinc	15					
PAH and Phenols	Naphthalene	70					
	Anthracene	0.4					
	Phenanthrene	2.0					
	Fluoranthene	1.4					
	Benzo(a)pyrene	0.2					
	Total Phenolics	400					
BTEX	Benzene	700					
	Toluene	180					
	Ethylbenzene	80					
	Xylenes (Total)	75					
OCP	Chlordane	0.001					
	DDT	0.0004					
	Endosulfan	0.01					
	Endrin	0.008					

Ana	llyte	ANZG (2018) Trigger Values for Marine water				
	Heptachlor	0.0004				
	Aldrin	0.003				
	Dieldrin	0.01				
	Methoxychlor	0.004				
	Chlorpyrifos	0.009				
UFF	Diazinon	0.01				
	Dimethoate	0.15				
	Fenitrothion	0.001				
РСВ	Aroclor 1242	0.6				
	Aroclor 1254	0.03				

Notes: Where the contaminant does not have a % LOP, the 'unknown' LOP has been adopted

D3.3 Health Screening Levels for Vapour Intrusion

The HSL to evaluate potential vapour intrusion risks derived from NEPC (2013) are in Table D11.

Contaminant	HSL-C	Solubility Limit
SAND	2 m to <4 m	-
Benzene	NL	59 000
Toluene	NL	61 000
Ethylbenzene	NL	3900
Xylenes	NL	21 000
Naphthalene	NL	170
TRH F1	NL	9000
TRH F2	NL	3000

Table D11: Groundwater Health Screening Levels for Vapour Intrusion (µg/L)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

Appendix E

Summary of Results Table E1: Summary of Results of Soil Analysis Table E2: Summary of Waste Classification Assessment Table E3: Summary of Results of Water Analysis

Table E1: Summary of Laboratory Results of Soil Analysis

						Me	tals						т	RH				BT	ΈX			PAH	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ
Sample ID	Depth	PQL Sample Date	4 ma/ka	0.4 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	0.1	1 ma/ka	1 ma/ka	25 ma/ka	50 ma/ka	25 malka	50 ma/ka	100 maka	100 ma/ka	0.2 ma/ka	0.5 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	0.05 ma/ka	0.5 ma/ka
Site Assessment Criteria - Rec	reational / Or	ben Space	5.5		5.5	55	5 5	5.5		5.5	55		5.5			5.5		5.5	5.5		5.5	5.5	
		-	000		000	17.000	000		1 4 000	00.000													
HILC			300	90	300	17,000	600	80	1,200	30,000													3
HSL C	0- <1m	(sand)											NL	NL			NL	NL	NL	NL	NL	-	
EIL/ ESL UR/POS		(coarse)	100		200	150	1,100		90	360		120	180		300	2,800	50	85	70	105	170	0.7	
Management Limit R/P/POS		(coarse)											700	1,000	2,500	10,000							
DC HSL C													5,100	3,800	5,300	7,400	120	18,000	5,300	15,000	1,900		
Previously Adopted SAC (Residentia	al A) for DP 2009)	100	20	12,000	1,000	300	15	600	14,000	65		1,000				1	1	3	14		1	
Previous Investigation (DP 200	09)																						
2	0.01	7/02/2000	4	<0.5	9	27	40	<0.1	6	72	-				-		-	-	-	-		-	-
2	0-0.1	1/03/2009	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360	· ·	- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
3	0-0.1	7/03/2009	300 100	×0.5	300 200	17000 150	40 600 1100	80 -	1200 90	30000 360		- 120	- NL 180	NL -	- 300	- 2800	- NL 50	- NL 85	- NL 70	- NL 105	- NL 170	- 0.7	3 -
Current Investigation																							
g	1		-4	-0.4	7		27	-01	1	46	-25	-50	-25	-50	100	-100	-0.2	-0.5			-4	0.4	0.6
BH1	0.4 - 0.5 m	21/01/2021	<+ 200 100	<0.4	200 200	0	27 600 1100	<u.1< td=""><td>4</td><td>40</td><td><20</td><td><30</td><td><23</td><td><su ni<="" td=""><td>100</td><td>< 100</td><td><0.2</td><td><0.5</td><td><1 NI 70</td><td><1 NI 105</td><td><1 NI 170</td><td>0.4</td><td>0.0</td></su></td></u.1<>	4	40	<20	<30	<23	<su ni<="" td=""><td>100</td><td>< 100</td><td><0.2</td><td><0.5</td><td><1 NI 70</td><td><1 NI 105</td><td><1 NI 170</td><td>0.4</td><td>0.0</td></su>	100	< 100	<0.2	<0.5	<1 NI 70	<1 NI 105	<1 NI 170	0.4	0.0
			<4	<0.4	5	15	11	<0.1	2	18	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
BH1	1 - 1.1 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH2	0.4 - 0.5 m	21/01/2021	<4	<0.4	11	9	10	<0.1	3	8	<25	150	<25	150	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
			300 100	90 -	300 200	17000 150	600 1100 19	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH3	1 - 1.1 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		• 120	NI 180	N -	- 300	- 2800	NI 50	NI 85	NI 70	NI 105	NI 170	- 0.7	3 -
RD5/20200121	1-11m	21/01/2021	<4	<0.4	14	9	17	<0.1	6	8				-		-		-	-		<0.1	<0.05	<0.5
663/20200121	1-1.11	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH3	2 - 2.1 m	21/01/2021	4	<0.4	9	6	10	<0.1	1	2	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5
			<4	<0.4	7	54	2	<0.1	41	15	<25	<50	<25	<50	<100	100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
BH4	0.1 - 0.2 m	20/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH5	0.4 - 0.5 m	20/01/2021	5	<0.4	12	7	27	<0.1	2	18	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.08	<0.5
BH5	14-15 m	20/01/2021	5	<0.4	12	4	11	<0.1	1200 90	5	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<1 NL 105	<1	<0.05	<0.5
BIJ	1.4 - 1.0 11	20/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360	• •	- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH6	0.4 - 0.5 m	21/01/2021	<4	<0.4	9	9	1/	<0.1	5	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.05	<0.5
			9	<1	16	15	27	<0.1	8	22	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1	<0.5	<0.5
BD3/20210121	0.4 - 0.5 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH6	1 - 1.1 m	21/01/2021	<4	<0.4	8	13	15	<0.1	1	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
-			300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH7	0.1 - 0.2 m	21/01/2021	<4	<0.4	9	35	30	<0.1	1200 90	30000 360	<25	<50	<25	<50	160	<100	<0.2	<0.5	<1 NI 70	<1 NI 105	<1 NI 170	5.1	3.
0117		04/04/0004	<4	<0.4	9	5	8	<0.1	2	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1	<0.5
BH/	1 - 1.1 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360	· ·	- 120	NL 180	NL •	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH8	0 - 0.1 m	20/01/2021	5	0.8	14	45	90	<0.1	5	150	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	0.1	<0.5
			300 100 <4	90 - <0.4	300 200	17000 150	600 1100 13	80 - <0.1	1200 90	30000 360	· · ·	- 120 <50	NL 180	NL -	- 300 <100	- 2800 <100	NL 50 ≼0.2	NL 85	NL 70	NL 105	NL 170	- 0.7 <0.05	<u>3</u> - ≼0.5
BH9	0.4 - 0.5 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL ·	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH9	1.4 - 1.5 m	21/01/2021	<4	<0.4	8	9	11	<0.1	1	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
BH10	01-02m	21/01/2021	300 100 <4	<0.4	15	9	600 1100 13	<0.1	1200 90 5	12	<25	<50	NL 180 <25	<50 <	280	340	<0.2	<0.5	NL 70 <1	NL 105 <1	NL 170 <1	<0.05	<0.5
Billo	0.1 - 0.2 m	21/01/2021	300 100	90 -	300 200	17000 150	600 1100 24	80 -	1200 90	30000 360	· ·	- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH11	0 - 0.1 m	20/01/2021	4 300 100	90 -	300 200	17000 150	54 600 1100	80 -	1200 90	30000 360	<25 · ·	- 120	<25 NL 180	NL -	- 300	- 2800	<0.2 NL 50	×0.5 NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH11	0.9 - 1 m	20/01/2021	<4	<0.4	7	5	61	<0.1	1	53	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3	1.8
BH11	1.9 - 2 m	20/01/2021	6	<0.4	14	9	13	<0.1	2	9	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
			300 100	90 - <0.4	300 200	17000 150 10	600 1100 76	80 - ≼01	1200 90	30000 360 19	· · ·	- 120 <50	NL 180	NL -	- 300 <100	- 2800 <100	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH12	0 - 0.1 m	20/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	<20 NL 180	NL ·	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH12 - ITRIPLICATEL	0-01m	20/01/2021	5	<0.4	10	6	24	<0.1	3	19		-	-		· ·	-			-	-	•	-	-
BITZ - [INI EIGNIE]	0-0.11	20/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360	· ·	- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -
BH12	0.4 - 0.5 m	20/01/2021	7	<0.4	20	8	17	<0.1	3	8	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
			300 100 5	90 - <0.4	300 200	1/000 150	600 1100 11	<u>80</u> - ⊲0.1	1200 90 <1	30000 360	<25	- 120 <50	NL 180 <25	NL •	- 300 <100	- 2800 <100	NL 50	NL 85	NL 70 <1	NL 105	NL 170 <1	- 0.7 <0.05	<u>3</u> . ≼0.5
BH12	1.4 - 1.5 m	20/01/2021	300 100	90 -	300 200	17000 150	600 1100	80 -	1200 90	30000 360		- 120	NL 180	NL -	- 300	- 2800	NL 50	NL 85	NL 70	NL 105	NL 170	- 0.7	3 -

Lab result

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

EIL/ESL value Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

- = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria for pentachlorophenol used as an initial screen

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Recreational C including public open space
- HIL C Recreational / Open Space (NEPC, 2013) HSL C Recreational / Open Space (vapour intrusion) (NEPC, 2013)
- DC HSL C Direct contact HSL C Recreational /Open space (direct contact) (CRC CARE, 2011)
- EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)
- ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Phenol
Phenol
5
mg/kg

120
8,500

	-	
120		-
	•	
120		-

		<5	
-	120		
		-	
-	120		
		-	
-	120		-
		<5	
	120		
		-	
	120		
	120		
		<5	
	120		
		<5	-
	120		
	.25		
	120		
-	120	<5	-
	100	~~	
	120		
		-	
	120		
		-	
÷ .	120		-
		<5	
	120		-
	120		-
•	120 120	-	-
-	120	-	-
-	120 120 120	- <5	-
•	120 120 120	- <5 <5	-
-	120 120 120	- <5 <5	- - -
-	120 120 120 120	- <5 <5	-
-	120 120 120 120 120	- <5 <5	-
-	120 120 120 120 120	- <5 -	-
-	120 120 120 120 120 120	- <5 -	-
-	120 120 120 120 120 120	- <5 - -	-
-	120 120 120 120 120 120 120	- <5 - -	-
-	120 120 120 120 120 120 120	- - - - -	-
-	120 120 120 120 120 120 120 120	- - - - - -	-
-	120 120 120 120 120 120 120 120	- <5 - <5 -	-
-	120 120 120 120 120 120 120 120	- <5 - <5 - <5	-
-	120 120 120 120 120 120 120 120 120	- 4 4 - 4 - 4 - 4 - 4 - 4	-
-	120 120 120 120 120 120 120 120 120	· 45 · 45 · 45 · 45 · 45 · 45 · 45 · 45	-
-	120 120 120 120 120 120 120 120 120 120	- - - - - - - - - - - - -	-
-	120 120 120 120 120 120 120 120 120 120	- - - - - - - - -	•
- - - - - - - - - - - - - - - - - - -	120 120 120 120 120 120 120 120 120 120	- - - - - - - - - - - - - -	•
-	120 120 120 120 120 120 120 120 120 120	- 4 4 · · 4 · · 4	-
	120 120 120 120 120 120 120 120 120 120	- - - - - - - - - - - - - -	-
-	120 120 120 120 120 120 120 120 120 120	- - - - - - - - - - - - - - - - - - -	-

Table E1: Summary of Laboratory Results of Soil Analysis

								OCP						OPP	PCB		Asbestos	
			QQQ	DDT+DDE+DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosultan	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soil >0.1g%g	Trace Analysis	Asbestos (50 g)
Sample ID	Depth	PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	
Site Assessment Criteria - Rec	reational / Op	pen Space	1	400	1	1	10	70	20	340	10	10	400	250	1 1	1	1	
HIL C HSL C	0-<1m	(sand)		400		180	10	70	20	340	10	10	400	230				
EIL/ ESL UR/POS	-	(coarse)																
Management Limit R/P/POS		(coarse)																
DC HSL C																		
Previously Adopted SAC (Residentia	al A) for DP 2009	9		200			10	50			10				10	0	0	NAD
Previous Investigation (DP 200	09)																	
2	0-0.1	7/03/2009		400 190	1	190	10	<0.1	20	240	10	10	400	-	•	NAD	NAD	NAD
3	0-0.1	7/03/2009		400 100		- 100	10 -	<0.1	20 -		10 -	10 -	400	230		NAD	NAD	NAD
0				400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -			
Current Investigation	1	1		1				1			1			1				
BH1	0.4 - 0.5 m	21/01/2021	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 -	<0.1	<0.1	<0.1 400 -	<0.1 250 -	<0.1	NAD	NAD	NAD
BH1	1 - 1.1 m	21/01/2021	-	-	-	-			-	-	-		-	-	-	NAD	NAD	NAD
BH2	0.4 - 0.5 m	21/01/2021		400 180		- 180	- 10 -	70	20 -	340	10 -	10 -	400	250	1 -	NAD	NAD	NAD
			<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1			
BH3	1 - 1.1 m	21/01/2021		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250	1	NAD	NAD	NAD
BD5/20200121	1 - 1.1 m	21/01/2021		- 400 180		- 180	- 10 -	70 -	- 20 -	- 340 -	- 10 -	- 10 -	400 -	250 -	1	-	-	
BH3	2 - 2.1 m	21/01/2021		- 400 180	-	- 180	- 10 -	- 70 -	- 20 -	- 340 -	- 10 -	- 10 -	- 400 -	- 250 -	. 1 .	NAD	NAD	NAD
BH4	0.1 - 0.2 m	20/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH5	0.4 - 0.5 m	20/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH5	1.4 - 1.5 m	20/01/2021		-		- 180	-	70 -	-	340	10 -	-	400	200		NAD	NAD	NAD
BH6	0.4 - 0.5 m	21/01/2021	<0.1	400 180 <0.1	<0.1	<0.1	10 - <0.1	<0.1	20 - <0.1	340 - <0.1	10 · <0.1	10 - <0.1	400 - <0.1	<0.1	1 - <0.1	NAD	NAD	NAD
			· ·	400 180	• •	- 180	10 -	70 -	20	340 -	10 -	10 -	400	250	1 .			
BD3/20210121	0.4 - 0.5 m	21/01/2021	· ·	400 180	· ·	- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -			
BH6	1 - 1.1 m	21/01/2021		- 400 180	• •	- 180	- 10 -	70 -	- 20 -	- 340 -	- 10 -	- 10 -	400 -	- 250 -	1 -	NAD	NAD	NAD
BH7	0.1 - 0.2 m	21/01/2021	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 -	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH7	1 - 1.1 m	21/01/2021	-	-		- 190	-	- 70 -	- 20 -	- 240 -	-	-	- 400	250	-	NAD	NAD	NAD
BH8	0 - 0.1 m	20/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH9	0.4 - 0.5 m	21/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH9	1.4 - 1.5 m	21/01/2021		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250	1	NAD	NAD	NAD
BH10	0.1 - 0.2 m	21/01/2021		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -	NAD	NAD	NAD
BH11	0-0.1 m	20/01/2021	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	<pre>70 - <0.1</pre>	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1	NAD	NAD	NAD
DI 144	00.1-	20/01/2021	- · · · · · · · · · · · · · · · · · · ·	400 180 <0.1	 <0.1	- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1	NAD	NAD	NAC
DIII	0.9 - 1 m	20/01/2021		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250	1 -	NAD	NAD	NAD
BH11	1.9 - 2 m	20/01/2021	 <0.1	400 180 <0.1		- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1	NAD	NAD	NAD
BH12	0 - 0.1 m	20/01/2021		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -	NAD	NAD	NAD
BH12 - [TRIPLICATE]	0 - 0.1 m	20/01/2021		- 400 180		- 180	- 10 -	70 -	20 -	- 340 -	- 10 -	- 10 -	400 -	250 -	1 -			
BH12	0.4 - 0.5 m	20/01/2021	<0.1	<0.1 400 180	<0.1	<0.1	<0.1 10 -	<0.1 70 -	<0.1 20 -	<0.1 340 -	<0.1	<0.1 10 -	<0.1	<0.1 250 -	<0.1	NAD	NAD	NAD
BH12	1.4 - 1.5 m	20/01/2021	-	- 400 180	•	- 180	- 10 -	- 70 -	- 20 -	- 340 -	- 10 -	- 10 -	- 400 -	- 250 -	1	NAD	NAD	NAD

Lab result

HIL/HSL value EIL/ESL value

Notes

а QA/QC replicate of sample listed directly below the primary sample

Reported naphthalene laboratory result obtained from BTEXN suite Criteria for pentachlorophenol used as an initial screen

c

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Recreational C including public open space

HIL C Recreational / Open Space (NEPC, 2013)
 HSL C Recreational / Open Space (NEPC, 2013)
 DC HSL C Direct contact HSL C Recreational / Open space (direct contact) (CRC CARE, 2011)

EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)

ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table E2: Summary of Waste Classification Assessment

								Metals							TRH					BT	ΓEX		
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Nickel TCLP	Zinc	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (total)
			PQL	4	0.4	1	1	1	0.1	1	0.01	1	25	50	100	100	50	0.2	0.5	1	2	1	3
Sample ID	Depth	Sample Date	Material Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	an f										-												
Waste Classificatio	on Criteria	CT1		100	20	100	NC	100	4		40	NC	650	NC	NC	NC	10000	10	288	600	NC	NC	1000
	S	SCC1		500	100	1900	NC	1500	50	1	050	NC	650	NC	NC	NC	10000	18	518	1080	NC	NC	1800
	Т	CLP1		5	1	5	NC	5	0.2		2	NC	N/A	NC	NC	NC	N/A	N/A	N/A	N/A	NC	NC	N/A
		CT2		400	80	400	NC	400	16	1	160	NC	2600	NC	NC	NC	40000	40	1152	2400	NC	NC	4000
	S	SCC2		2000	400	7600	NC	6000	200	4	200	NC	2600	NC	NC	NC	40000	72	2073	4320	NC	NC	7200
	Т	CLP2		20	4	20	NC	20	0.8		8	NC	N/A	NC	NC	NC	N/A	N/A	N/A	N/A	NC	NC	N/A
Published Backgro	ound Levels			•	·		•	•	•	•		•	•		•	•	•	•	•	•	•		
	ANZE	CC (1992)		0.2-30	0.04-2	0.5-110	1-190	<2-200	0.001-0.1	2-400	-	2-180	-	-	-	-	-	0.05 - 1	0.1 - 1	-	-	-	-
	ANZE	CC (2000)		1-53	0.016-0.78	2.5-673	0.4-412	2-81	-	1-517	-	1-263	-	-	-	-	-	-	-	-	-	-	-
Previous Investigation	tion (DP 2009)																						
2	0-0.1 m	7/03/2009	Fill	4	<0.5	9	27	40	<0.1	6	-	72	-	-	-	-	-	-	-	-	-	-	-
3	0-0.1 m	7/03/2009	Fill	5	<0.5	15	35	45	<0.1	11	-	110	-	-		-	-	-	-		-	-	-
Current Investigati	ion																						
BH1	0.4 - 0.5 m	21/01/2021	Fill	<4	<0.4	7	8	27	<0.1	4	-	46	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH1	1 - 1.1 m	21/01/2021	Natural	<4	<0.4	5	15	11	<0.1	2	-	18	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH2	0.4 - 0.5 m	21/01/2021	Natural	<4	<0.4	11	9	10	<0.1	3	· ·	8	<25	110	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH3	1 - 1.1 m	21/01/2021	Fill	4	<0.4	28	16	18	0.2	10	· ·	15	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BD5/20200121	1 - 1.1 m	21/01/2021	Fill	<4	<0.4	14	9	17	<0.1	6		8	-	-	-	-	-	-	-	-	-		-
BH3	2-2.1 m	21/01/2021	Naturai	4	<0.4	9	6	10	<0.1	1	-	2	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH4 BH5	0.1 - 0.2 m	20/01/2021	Fill	<4 5	<0.4	12	54 7	2	<0.1	41	0.03	15	<25	<50	<100	<100	-	<0.2	<0.5	<1	~2	<1	<3
BH5	1.4 - 1.5 m	20/01/2021	Natural	5	<0.4	12	4	11	<0.1	1		5	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH6	0.4 - 0.5 m	21/01/2021	Natural	<4	<0.4	9	9	17	<0.1	5		13	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BD3/20210121	0.4 - 0.5 m	21/01/2021	Natural	9	<1	16	15	27	<0.1	8	-	22	<10	<50	<100	<100	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
BH6	1 - 1.1 m	21/01/2021	Natural	<4	<0.4	8	13	15	<0.1	1		13	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH7	0.1 - 0.2 m	21/01/2021	Fill	<4	<0.4	9	35	35	<0.1	5	-	83	<25	<50	<100	120	-	<0.2	<0.5	<1	<2	<1	<3
BH7	1 - 1.1 m	21/01/2021	Natural	<4	<0.4	9	5	8	<0.1	2	-	6	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH8	0 - 0.1 m	20/01/2021	Fill	5	0.8	14	45	90	<0.1	5		150	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH9	0.4 - 0.5 m	21/01/2021	Fill	<4	<0.4	8	6	13	<0.1	4	-	10	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH9	1.4 - 1.5 m	21/01/2021	Natural	<4	<0.4	8	9	11	<0.1	1	-	7	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH10	0.1 - 0.2 m	21/01/2021	Natural	<4	<0.4	15	9	13	<0.1	5	· ·	12	<25	<50	<100	290	-	<0.2	<0.5	<1	<2	<1	<3
BH11	0 - 0.1 m	20/01/2021	Fill	4	<0.4	10	21	34	<0.1	7		79	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH11 BH11	0.9 - 1 m	20/01/2021	FIII	<4	<0.4	14	5	12	<0.1	2	-	53	<25	<50	<100	<100	-	<0.2	<0.5	<1	<2	<1	<3
BH12	0-01m	20/01/2021	Fill	5	<0.4	14	10	76	<0.1	2	· ·	19	<20	<50	<100	<100	-	<0.2	<0.5	<1	~~	<1	<3
BH12 -	0.01m	20/01/2021	Fill	5	<0.4	10	6	24	<0.1	3		10	~20		100	100	+ .	~0.2					
[TRIPLICATE]	04.05m	20/01/2021	Em	7	<0.4	20	•	47	<0.1	3		13	- 25		_100		-		-0.5		-		-
BH12	14-15m	20/01/2021	Fill	5	<0.4	20	10	11	<0.1	-1	· ·	5	<20	<50	<100	<100		<0.2	<0.5	<1	< <u>-</u>	<1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DITIZ	1.4 * 1.5 11	20/01/2021		5	-0.4	0	10		×0.1			1	~23	~30	100	100	· ·	~U.Z	-0.0		~~		~~

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 📒 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

BOLD= Exceedance in a natural sample of the published background levels NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Total chromium used as initial screen for chromium(VI).

C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen

f All criteria are in the same units as the reported results

PQL Practical quantitation limit

CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste

SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Detailed Site (Contamination) Investigation,

Table E2: Summary of Waste Classification A

												P/	ΑH								
				Benzo(a)pyrene (BaP)	Benzo(a)pyrene (BaP) TCLP	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(k)fluoranthen e	Benzo(b.j+k)fluorant hene	Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthrac ene	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
			PQL	0.05	0.001	0.1	0.1	0.1	0.1	0.5	0.2	0.1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1	0.05
Sample ID	Depth	Sample Date	Material Type	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Waste Classification	n Criteria ^f	I				I		1	1	1	I			1		I			1	I	I
	C	CT1		0).8	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	200
	SC	CC1		1	10	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	200
	TC	CLP1		0.	.04	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	N/A
	C	CT2		3	3.2	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	800
	SC	CC2		2	23	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	800
	TC	LP2		0.	.16	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	N/A
Published Backgrou	und Levels																				
	ANZEC	CC (1992)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.95-5
	ANZEC	C (2000)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Previous Investigat	ion (DP 2009)																,				
2	0-0.1 m	7/03/2009	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	0-0.1 m	7/03/2009	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Current Investigatio	n		1			1	1														
BH1	0.4 - 0.5 m	21/01/2021	Fill	0.4	-	<0.1	<0.1	<0.1	0.4	-	0.7	0.3	0.4	<0.1	0.6	<0.1	0.2	<1	0.2	0.7	4
BH1	1 - 1.1 m	21/01/2021	Natural	<0.05		<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH2	0.4 - 0.5 m	21/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH3	1 - 1.1 m	21/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BD5/20200121	1-1.1 m	21/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05
BH4	2-2.1111 0.1-0.2 m	21/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH5	0.4 - 0.5 m	20/01/2021	Fill	0.08	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<1	<0.1	0.1	0.3
BH5	1.4 - 1.5 m	20/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH6	0.4 - 0.5 m	21/01/2021	Natural	0.05		<0.1	<0.1	<0.1	<0.1		<0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<1	<0.1	0.1	0.3
BD3/20210121	0.4 - 0.5 m	21/01/2021	Natural	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5
BH6	1 - 1.1 m	21/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH7	0.1 - 0.2 m	21/01/2021	Fill	5.1	<0.001	<0.1	0.4	0.7	4.5	-	7.8	3.5	4	0.8	9.4	<0.1	2.8	<1	2.8	8.8	51
BH7	1 - 1.1 m	21/01/2021	Natural	0.1	-	<0.1	<0.1	<0.1	0.1	-	<0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<1	<0.1	0.2	0.69
BH8	0 - 0.1 m	20/01/2021	Fill	0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<1	<0.1	0.2	0.52
BH9	0.4 - 0.5 m	21/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH9	1.4 - 1.5 m	21/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH10	0.1 - 0.2 m	21/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<1	<0.1	0.1	0.3
BH11	0 - 0.1 m	20/01/2021	Fill	0.4	•	<0.1	<0.1	0.1	0.4	-	0.6	0.2	0.4	<0.1	0.7	<0.1	0.2	<1	0.4	0.6	3.9
BH11	0.9 - 1 m	20/01/2021	Fill	1.3	<0.001	<0.1	<0.1	0.1	0.5	-	2	1.2	0.6	0.2	0.4	<0.1	0.8	<1	0.2	0.5	7.4
BH11	1.9 - 2 m	20/01/2021	Natural	<0.05	-	<0.1	<0.1	<0.1	<0.1		<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
вн12 BH12 -	U-U.1 m	20/01/2021	Fill	0.2	-	<0.1	<0.1	<0.1	0.1	-	0.2	U.1	0.2	<0.1	0.2	<0.1	<0.1	<1	<0.1	0.2	1.2
[TRIPLICATE]	0 - 0.1 m	20/01/2021	Fill	•		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
BH12	0.4 - 0.5 m	20/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	· ·	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05
BH12	1.4 - 1.5 m	20/01/2021	Fill	<0.05	-	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05

Notes:

- a QA/QC replicate of sample listed directly below the prima
- b Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial
- d Criteria for scheduled chemicals used as an initial screer
- e Criteria for Chlorpyrifos used as initial screen
- f All criteria are in the same units as the reported results
- PQL Practical quantitation limit
- CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1;

Table E2: Summary of Waste Classification A

				Phenol	00	CP	OPP	PCB		Asbestos	
				Phenol	Total Endosulfan	Total Analysed OCP	Total Analysed OPP	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Total Asbestos
			PQL	5	0.1	0.1	0.1	0.1			
Sample ID	Depth	Sample Date	Material Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-
Waste Classificatio	n Criteria ^f			1							
	C	CT1		288	60	<50	4	<50	NC	NC	NC
	S	CC1		518	108	<50	7.5	<50	NC	NC	NC
	тс	LP1		N/A	N/A	N/A	N/A	N/A	NC	NC	NC
	C	CT2		1152	240	<50	16	<50	NC	NC	NC
	S	CC2		2073	432	<50	30	<50	NC	NC	NC
	тс	CLP2		N/A	N/A	N/A	N/A	N/A	NC	NC	NC
Published Backgro	und Levels				•		•				
	ANZEC	CC (1992)		0.03 - 0.5	<0.001 - <0.97	<pql< td=""><td><pql< td=""><td>0.02 - 0.1</td><td>NIL</td><td>NIL</td><td>NIL</td></pql<></td></pql<>	<pql< td=""><td>0.02 - 0.1</td><td>NIL</td><td>NIL</td><td>NIL</td></pql<>	0.02 - 0.1	NIL	NIL	NIL
	ANZEC	C (2000)		-	-	-	-	-	-	-	-
Previous Investigat	ion (DP 2009)										
2	0-0.1 m	7/03/2009	Fill	-	<0.1	<0.1	-	-	NAD	NAD	NAD
3	0-0.1 m	7/03/2009	Fill	-	<0.1	<0.1	-	-	NAD	NAD	NAD
Current Investigation	on			1	•						
BH1	0.4 - 0.5 m	21/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH1	1 - 1.1 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH2	0.4 - 0.5 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH3	1 - 1.1 m	21/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BD5/20200121	1 - 1.1 m	21/01/2021	Fill	-	-	-	-	-	-	-	-
BH3	2 - 2.1 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH4	0.1 - 0.2 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH5	0.4 - 0.5 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH5	1.4 - 1.5 m	20/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH6	0.4 - 0.5 m	21/01/2021	Natural	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BD3/20210121	0.4 - 0.5 m	21/01/2021	Natural	-	-	-	-	-	-	-	-
BH6	1 - 1.1 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH7	0.1 - 0.2 m	21/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH7	1 - 1.1 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH8	0 - 0.1 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH9	0.4 - 0.5 m	21/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH9	1.4 - 1.5 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH10	0.1 - 0.2 m	21/01/2021	Natural	-	-	-	-	-	NAD	NAD	NAD
BH11	0 - 0.1 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH11	0.9 - 1 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH11	1.9 - 2 m	20/01/2021	Natural	-	-	-		-	NAD	NAD	NAD
BH12	0 - 0.1 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
[TRIPLICATE]	0 - 0.1 m	20/01/2021	Fill	-	-	-	-	-	-	-	-
BH12	0.4 - 0.5 m	20/01/2021	Fill	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH12	1.4 - 1.5 m	20/01/2021	Fill	-	-	-	-	-	NAD	NAD	NAD

Notes:

- a QA/QC replicate of sample listed directly below the prima
- b Total chromium used as initial screen for chromium(VI).
 c Total recoverable hydrocarbons (TRH) used as an initial
- d Criteria for scheduled chemicals used as an initial screer
- Criteria for scheduled chemicals used as an initial s
- e Criteria for Chlorpyrifos used as initial screen f All criteria are in the same units as the reported results

All chiena are in the same units as th

- PQL Practical quantitation limit
- CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- TCLP1
 NSW EPA, 2014, Waste Classification Guidelines Part 1;

 CT2
 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; NSW EPA, 2014, Waste Classification Guidelines Part 1;
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1;
- Detailed Site (Contamination) Investigation, Meadowbank Public School Repurpose to Open Space, Meadowbank Public School, Ryde

99856.01.R.002.Rev0 February 2021

Table E3: Summary of Groundwater Analytical Results (All results in μ g/L unless otherwise stated)

					Heav	/y Metals (I	Dissolved	d)						P/	AH and Phe	nols							TRH (T	PH)					BTEX	C							OCP							
Sample ID	Sample Date	AS	Gd	· ۲	3	£	Нg	N	Z	Ca	бМ	Napthalene	Anthracene	Phenanthrene	Fluoranthene	Benzo(a)pyrene	All other PAHs	Total Phenolics (mg/L)	C6-C10	C10-C14		C15-C28	C29-C36	C10-C16	C16-C34	C34-C40	Benzene	Toulene	Ethyl-benzene	m+p xylene	o-xylene	AII OCPs	Aldrin	Chlordane (cis)	Chlordane (trans)	DDT	Dieldrin	Endosultan I	Endosufan II	Endrin	Heptachlor	Methoxychlor	All PCBs	All OPPs
MW5 (BH5)	2/02/2021	<1	0.2	<1	1	<1 <	<0.05	3	80	49	17	<1	<1	<1	<1	<1	<pql< th=""><th>. <50</th><th><10</th><th><50</th><th>) -</th><th><100</th><th><100</th><th><50</th><th><100</th><th><100</th><th><1</th><th><1</th><th>1 <1</th><th><2</th><th><1</th><th><pql< th=""><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><pql< th=""><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	. <50	<10	<50) -	<100	<100	<50	<100	<100	<1	<1	1 <1	<2	<1	<pql< th=""><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><pql< th=""><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<pql< th=""><th><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>
																					Gro	oundwat	er Investiga	tion Levels	(GIL) ³																			
NEPC (201 (sand, groun	NEPC (2013) HSL-A/B (sand, groundwater 2-4m) -																																											
Marine	water 4	-	5.5	4.4 1	.3	4.4 (0.40	70	15	-	-	70	0.4*	2.0*	1.4*	0.2*	-	400	-	-		-	-	-	-	-	700	180	0* 80*	7	′5*	-	0.003	0	.001	0.0004	0.01	0	.01	0.008	0.0004	0.004	-	-

Notes:

Assumed as Cr(VI) oxidation state, default guideline value for 95% species protection used

Only those compounds for which GILs have been determined are included in the list 2

ANZG (2019) Australian and New Zealand Guidelines for Fresh & Marine Water Quality 3

4 Marine water trigger values for slightly to moderately disturbed ecosystems - 95% species protection

Insufficient data for reliable trigger value. Interim working value or low reliability value used for screening purposes

Not defined/ not analysed/ not applicable

Bold Exceeds GIL

NL PQL

Not limiting Practical Quantification Limit of Laboratory

Appendix F

Borehole Logs

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 18.5 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323927.2 NORTHING: 6256490.4 **DIP/AZIMUTH:** 90°/--

BORE No: BH01 PROJECT No: 99856.00 DATE: 21/1/2021 SHEET 1 OF 1

Γ			Description	<u>.0</u>		Sam	npling	& In Situ Testing	_	Well	
ā		epth (m)	of	raph Log	e	oth	ple	Results &	Vate	Construction	
		()	Strata	Ū	Γ ¹	Dep	Sam	Comments	>	Details	
ſ		0.03	ASPHALTIC CONCRETE	<i>р. °О</i> '	A/E*	0.0				-	
ł	ŀ	0.13	FILL/ROADBASE/Gravelly SAND: fine to medium sand, grey, fine to medium subangular igneous gravel, dry		>	0.1				-	
Ţ			FILL/Clayey SILT: low plasticity, brown, trace rootlets,	\bigotimes		04					
-ę				\bigotimes	A/E	0.5				-	
ł	ł	0.6	CLAY CLCH: medium to high plasticity, red-brown mottled	$\not\vdash \not\!$	2					-	
ł	F		yellow-brown, trace fine to medium ironstone gravel,	\mathbb{V}/\mathbb{I}	s			4,5,7 N = 12		-	
ľ	Ī		W <pl, residual<="" stiff,="" td=""><td>V//</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	V//	1						
	-1			\mathbb{V}/\mathbb{I}	 	0.95				-1	
ł	-			$\langle / /$	A/E	1.1				-	
ł	ł				1					-	
t	Ī			\langle / \rangle							
Ę	_	1.5		\mathbb{Z}	1	1.5					
ł	ł		CLAY CI-CH: medium to high plasticity, pale grey with yellow-brown, w <pl, extremely<="" grading="" stiff,="" td="" to="" very=""><td>///</td><td>1</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></pl,>	///	1	-				-	
ł	F		weathered shale with relict rock texture below 2.5m depth	$\langle / /$	s			6,6,11 N = 17		-	
ł	t			<i>\//</i>	1					-	
	-2			\mathbb{V}/\mathbb{I}]	1.95				-2	
ł	ŀ			V//	1					-	
ł	ł			\mathbb{V}/\mathbb{I}	1					-	
ł	F			$\langle / /$						-	
_	<u>_</u>				1						
ľ	-			\langle / \rangle						-	
ł	ł			$\langle / /$	1					-	
ł	F			\langle / \rangle							
Ì	-3	30			1	30				-3	
ŀ		0.0	SHALE: dark grey, very low strength, Ashfield Shale		1	0.0					
ł	-				s			16,18,25 N = 43		-	
ł	ł				1			11-40		-	
Ļ	0	3.45	Bore discontinued at 3 45m		1	-3.45-					
ľ	-		Target strata reached								
ł	+									-	
ł	ł									-	
l	4									4	
+	+ .									ļ	
ł	ł										
ł	ł									<u> </u>	
Į,	4										
	-										
$\left \right $	ł										
ł	ł									+	
t	t									t l	

RIG: Comacchio 205 **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 3.0m WATER OBSERVATIONS: No free groundwater observed REMARKS: *Field replicate BD6/20210121 taken from 0-0.1m LOGGED: TM

CASING: Uncased

CDE

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.3 AHD Meadowbank P.S. Repurpose to Open Space LOCATION: Meadowbank Public School, Ryde

EASTING: 323908.9 NORTHING: 6256439.7 **DIP/AZIMUTH:** 90°/--

BORE No: BH02 PROJECT No: 99856.00 DATE: 21/1/2021 SHEET 1 OF 1

		Description	.c		Sam	pling a	& In Situ Testing	5	Well	
Ч	Deptn (m)	of	Log	/be	pth	nple	Results &	Wate	Construction	
		Strata	0	Ê	Ğ	Sar	Comments		Details	
ł	- 0.1	MULCH: wood chips	\bigotimes	*					-	
-9	- 0.2	generally in a loose condition	\bigvee						-	
ŀ	-	CLAY CI-CH: medium plasticity, with tree roots, w <pl, stiff_residual<="" td=""><td>$\langle / /$</td><td></td><td>0.4</td><td></td><td></td><td></td><td>-</td><td></td></pl,>	$\langle / /$		0.4				-	
t		Between 0.5-0.8m: tree root			0.5				-	
ŀ	-			1					-	
t	-				0.8					
ŀ	-1		\mathbb{V}/\mathbb{I}	s			8,5,6		-1	
ŀ			$\langle / /$				N - 11			
-5	- 1.3	CLAY CLCH: medium to high plasticity, red-brown mottled	H		1.25				-	
ŀ		yellow-brown, trace fine to medium ironstone gravel,		A/E	1.4 1.5				-	
ł	-								-	
ţ	-			s			8,8,8 N = 16			
ŀ	-			1	1.95				-	
ļ	-2								-2	
ł.	-								-	
-4	-								-	
ł	-								-	
ļ	-			1					-	
ŀ	-		\mathbb{V}						-	
ļ	-3				3.0				-3	
ŀ	-		\mathbb{V}				0.40.44		-	
-5	-			s			8,12,11 N = 23		-	
ł	-				3.45					
ŀ	-		\mathbb{V}						-	
ŀ	- 3.7	Sandy CLAY CL: low plasticity, pale grey, fine to medium,	·/·/·						-	
F	F	w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl,>							-	
ł	-4		1.	1					-4	
F	F								[
-6			·/·/·							
-	-	Polou 4 Em: with rolist rock touture, grading to outromoly]	4.5					
ł	_	weathered sandstone					8.11.14/130			
ŀ	-		[·/./.	S			refusal		-	
ţ	4.9 -5 4.93	SANDSTONE: yellow-brown, low strength, possibly	<u> :</u>	-	-4.93-				-5	
ŀ	-	Wittagong Formation or Hawkesbury Sandstone August Sandstone Bore discontinued at 4.93m August Sandstone August Sandstone							-	
<u>+</u> =	ļ	SPT refusal on low strength sandstone								
ŀ	ŀ								-	
<u> </u>		1			·		1		L	

RIG: Comacchio 205

DRILLER: Geosense

LOGGED: TM

CASING: Uncased

TYPE OF BORING: Solid Flight Auger (TC bit) to 4.5m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

		SAN	IPLING	i & IN SITU TESTIN	G LEGI	END		
	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
	BLK	Block sample	U,	Tube sample (x mm dia.)) PL(C) Point load diametral test ls(50) (MPa)		
	С	Core drilling	Ŵ	Water sample	aq (Pocket penetrometer (kPa)		
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
	Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		
1							_	

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 18.0 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323955.7 NORTHING: 6256416.2 **DIP/AZIMUTH:** 90°/--

BORE No: BH03 PROJECT No: 99856.00 DATE: 21/1/2021 SHEET 1 OF 1

Γ			Description	lic		Sam	pling a	& In Situ Testing		Well	
R	D	epth (m)	of	raph Log	be	oth	ple	Results &	Vate	Construction	
			Strata	G	Ţ	Del	San	Comments	-	Details	
F	-	0.08		к х Х	A/E	0.0				-	
-	-	0.11′	FILL/ROADBASE/Sandy GRAVEL: fine to medium gravel, dark grey, sub-rounded igneous gravel, fine to medium sand, dry, apparently well compacted			0.1				-	
	F		FILL/ CLAY: medium plasticity, brown, trace fine to medium sand, w <pl, a="" condition<="" generally,="" in="" stiff="" td=""><td></td><td>A/E</td><td>0.4</td><td></td><td></td><td></td><td></td><td></td></pl,>		A/E	0.4					
-	-				s			4,5,7 N = 12		-	
	-1				A/E*	0.95 1.0 1.1				-1	
ł	ŀ	1.2	CLAY CI-CH: medium to high plasticity orange-brown	\searrow						-	
-			mottled red, w <pl, residual<="" stiff,="" td=""><td></td><td>A/E</td><td>1.4</td><td></td><td></td><td></td><td>-</td><td></td></pl,>		A/E	1.4				-	
-	-		Below 1.6m: red-brown mottled pale grey, trace fine to medium ironstone gravel		s			6,6,9 N = 15		-	
16	2-2					1.95				-2	
-	-									-	
	Ē									-	
-	-									-	
15	2-3					3.0				-3	
-	ŀ		Below 3.0m: pale grey with some yellow-brown		s			3,8,7 N = 15		-	
	Ē					3.45					
-	-									-	
4	-4									- 4	
-										-	
	ŀ	4 5				15					
-		4.5	CLAY CL-CI: low to medium plasticity, pale grey with some yellow-brown, trace fine to medium ironstone gravel, relict rock texture, w <pl, extremely="" hard,="" weathered<br="">Ashfield Shale</pl,>		s	4.5		10,21,25 N = 46			
13-	-5	4.95	SHALE: dark grey and yellow-brown, very low strength, Ashfield Shale			-4.95-				- 5	
ŀ	Ē		SPT refusal on very low strength shale								
-	-									-	

RIG: Comacchio 205 **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 4.5m WATER OBSERVATIONS: No free groundwater observed

LOGGED: TM

CASING: Uncased

Geotechnics | Environment | Groundwater

REMARKS: *Field replicate BD5/20210121 taken from 1.0-1.1m

CDE

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 15.4 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323951.3 NORTHING: 6256465.6 **DIP/AZIMUTH:** 90°/--

BORE No: BH04 PROJECT No: 99856.00 DATE: 20/1/2021 SHEET 1 OF 1

		Description	jc		Sam	pling a	& In Situ Testing	5	Well
RL	Depth (m)	of	Log	/pe	pth	nple	Results &	Wate	Construction
	0.00	Strata	G	ŕ		Sar	Comments	-	Details
ŀ	- 0.03	ASPHALTIC CONCRETE	9. <i>0</i> .	A/E	0.0				-
ł	- 0.2	grey-brown igneous gravel, fine to medium sand, dry	17						-
-12	,	CLAY CH: medium to high plasticity, yellow-brown mottled			0.4				
ł	-			A/E*	0.5				-
ł	-		$\langle / /$						-
Ì	[$\langle / /$	s			N = 14		
ŀ	-		$\langle / /$		0.05				-
ł	-1		\langle / \rangle	A/E	1.0				- 1
t					1.1				
ŀ	-		\langle / \rangle						-
-1	-								-
t		Below 1.5m: pale grey mottled red-brown			1.5				
ŀ	-			s			3,4,5		-
ł	F						N = 9		-
t	_2				1.95				- 2
ŀ	-		$\langle / /$						-
ł	-		$\langle / /$	1					-
	ļ								
-	-		\langle / \rangle						-
ł	-								-
ŀ									
ŀ	-								-
ł	-3 3.0	CLAY CI: medium plasticity, pale grey with some	\square		3.0				-3
ŀ		orange-brown, trace fine to medium ironstone gravel, with relict rock texture w <pl residual<="" stiff="" td="" very=""><td></td><td></td><td></td><td></td><td>3812</td><td></td><td>-</td></pl>					3812		-
ŀ	-			s			N = 20		-
-6	!-				3.45				-
t				1					
ŀ	-		$\langle / /$						-
ł	F		$\langle / /$	1					-
ţ	- 3.9 -4	SHALE: dark grey, very low strength, Ashfield Shale	É	1					
ł	. 			ł					
ł	ŀ			ł					
Ľ,	ļ			ł					
ŀ	- 4.5	SHALE dod, grou low stress att. Ask5-14 Ob-14		<u> </u>	4.5		16/1E0 D		
ŀ	4.65			S	-4.65-		refusal		
ţ	ļ	Bore discontinued at 4.65m SPT refusal on low strength shale							
ł	ļ								
L									

RIG: Hanjin D&B-8D **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 4.5m WATER OBSERVATIONS: No free groundwater observed

LOGGED: TM

CASING: Uncased

REMARKS: *Field replicate BD4/20210120 taken from 0.4-0.5m

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.1 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323885.5 NORTHING: 6256393 DIP/AZIMUTH: 90°/--

BORE No: BH05 PROJECT No: 99856.00 DATE: 20/1/2021 SHEET 1 OF 1

Γ	_		Description	ic.		San	npling &	& In Situ Testing	5	Well
RL	De	epth m)	of	Log	,pe	pth	nple	Results &	Wate	Construction
			Strata	0	Ê		Sar	Comments	-	Details
-9	2	0.05	- MULCH: wood chips	ĚX	A/E	0.0				- well plug
ł	ŀ		generally in a loose condition	\mathbb{K}	>					Backfill 0.0-0.5m
ļ	Į				×	0.4				
ł	ŀ	0 55		\bigotimes	A/E	0.5				
ł	ł	0.00	FILL/ CLAY: medium plasticity, grey-brown, trace fine to medium sand, w <pl a="" condition<="" generally="" in="" stiff="" td=""><td></td><td>*</td><td></td><td></td><td>2740</td><td></td><td></td></pl>		*			2740		
ļ					s			N = 17		Bentonite 0.5-1.0m
ł	-	0.85	CLAY CI-CH: medium to high plasticity, red-brown, w <pl,< td=""><td>$\sqrt{2}$</td><td></td><td>0.95</td><td></td><td></td><td></td><td>0.0-1.5m</td></pl,<>	$\sqrt{2}$		0.95				0.0-1.5m
ł,	-1		very stiff, residual		A/E	1.0				
Ē						1 1.1				
ł	ł									
ł	ŀ				A/E	1.4				
ļ	ļ		Below 1.5m: trace fine to medium ironstone gravel			1.5				
ł	ŀ				s			4,9,10 N = 19		
ł	t]					
ŀ	-2					1.95				
-4	-									Machine slotted
Ì	Ì			\mathbb{V}/\mathbb{I}					T	PVC screen
ŀ	-			$\langle / /$					2-21	
ł	ŀ]				02-0	
ļ	Į									
ł	ł									End cap
ł		2.9	Sandy CLAY CI: medium plasticity, pale grey, w <pl, td="" very<=""><td><u></u></td><td></td><td>20</td><td></td><td></td><td></td><td></td></pl,>	<u></u>		20				
-6		3.0	stiff, residual		s	3.0		16,5/0 refusal		
ł	ł	3.15	Formation or Hawkesbury Sandstone			-3.15-				-
t	t		Bore discontinued at 3.15m SPT refusal on low strength sandstone							
ŀ	-									-
ł	F									-
t	Ì									-
-	-									-
ŀ	-4									-4
Ę										-
ŀ	-									-
ł	ł									-
ţ	ļ									
+	ł									
ł	F									
t	t									

RIG: Hanjin D&B-8D **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 3.0m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** Groundwater well installed to 2.8m depth

LOGGED: TM

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.5 AHD Meadowbank P.S. Repurpose to Open Space LOCATION: Meadowbank Public School, Ryde

EASTING: 323922.7 **NORTHING:** 6256399.3 **DIP/AZIMUTH:** 90°/--

BORE No: BH06 **PROJECT No: 99856.00** DATE: 20/1/2021 SHEET 1 OF 1

			Description	.c		Sam	pling a	& In Situ Testing	<u>ب</u>	Well	
R	Dep (m)	th)	of	iraph Log	/pe	pth	nple	Results &	Wate	Construction	
L			Strata		ŕ	_ گ	Sar	Comments		Details	
ŀ	-		FILL/TOPSOIL/CLAY: medium plasticity, brown, with silt, trace rootlets, w <pl a="" condition<="" firm="" generally="" in="" td=""><td>Ŵ</td><td>A/E</td><td>0.0</td><td></td><td></td><td></td><td>-</td><td></td></pl>	Ŵ	A/E	0.0				-	
t	Į	0.2	CLAY CI-CH: medium to high plasticity, red-brown mottled	\mathcal{V}							
ŀ	-		yellow-brown, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>A /</td><td>0.4</td><td></td><td></td><td></td><td>-</td><td></td></pl,>		A /	0.4				-	
-4	2-			\langle / \rangle	A/E^	0.5				-	
ţ	[\mathbb{V}/\mathbb{I}				6.7.9		-	
ł	-			$\langle / /$	5			N = 16		-	
ł				\langle / \rangle		0.95				-	
ļ	[$\langle / /$	A/E	1.0					
ł	ł									-	
t	Į.			$\langle / /$						-	
-4	2		Relow 1.5m; trace fine ironstone gravel	$\langle / /$		1.5				-	
ł	ł		Dow 1.0m. add the nonstone grave	\langle / \rangle				7711		-	
F	[\mathbb{V}/\mathbb{I}	S			N = 18		-	
ł	-					1.95				-	
ţ	-2			\langle / \rangle						-2	
ł	ł			\mathbb{V}/\mathbb{I}						-	
ł	t										
4	-			\langle / \rangle						-	
ł	-			\mathbb{V}						-	
ţ	ļ										
ł	-									-	
ł	-3					3.0				-3	
F	[\langle / \rangle	s			8,7,13		-	
ł	-		Below 3.2m: trace fine to coarse ironstone grave	$\langle / /$				N = 20		-	
-5	2					3.45				-	
ł	-									-	
ŀ	[3.7	Sandy CLAY CL-CI: low to medium plasticity, pale grey	1././						-	
ŀ	ŀ		and yellow-brown, fine to medium sand, w <pl, residual<="" stiff,="" td="" very=""><td>·/./.</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl,>	·/./.						-	
ł	-4			\ <u>.</u>						-4	
ļ	ļ			<u></u>						-	
ŀ	ł		Below 4.2m: with relict rock texture, grading to extremely weathered sandstone	[<u>/./</u> .							
-	,	4.5		<u> //</u>		45		0/50			
ŀ	ŀ	4.6	SANDSTONE: pale grey, low strength, possibly Mittagong \Formation or Hawkesbury Sandstone		S	-4.6-		refusal	[
ŧ	ţ		Bore discontinued at 4.6m								
F	ļ		SET FRUSH OF IOW SURINGUI SHIUSLONE								
L											

RIG: Hanjin D&B-8D

DRILLER: Geosense

LOGGED: TM

CASING: Uncased

TYPE OF BORING: Solid Flight Auger (TC bit) to 4.5m WATER OBSERVATIONS: Groundwater seepage at 4.5m depth during auger drilling **REMARKS:** *Field replicate BD3/20210120 taken from 0.4-0.5m

	SAMPL	INC	3 & IN SITU TESTING	LEG	END						
A Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_
B Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)						
BLK Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		11.				rners
C Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	e	⊳	Water seep	S	Standard penetration test						10 11
E Environmental sa	ample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	s Env	ironment	Groundwater
						-					

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 17.7 AHD Meadowbank P.S. Repurpose to Open Space LOCATION: Meadowbank Public School, Ryde

EASTING: 323945.1 **NORTHING:** 6256378.6 **DIP/AZIMUTH:** 90°/--

BORE No: BH07 **PROJECT No: 99856.00** DATE: 21/1/2021 SHEET 1 OF 1

			Description	jc		Sam	ipling &	& In Situ Testing	L	Well	
Ч	Dept (m)	h	of	iraph Log	/pe	pth	nple	Results &	Wate	Construction	
			Strata	0	ŕ	De	Sar	Comments		Details	
ł	- (0.1	MULCH: wood chips	\bigotimes	A/E*	0.1				-	
F	[(0.3	medium sand, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>\searrow</td><td></td><td>0.2</td><td></td><td></td><td></td><td></td><td></td></pl,>	\searrow		0.2					
ŀ	-		CLAY CH: high plasticity, yellow-brown, w <pl, stiff,<br="">residual</pl,>	\langle / \rangle	A/E	0.4				-	
ļ	ļ					0.5					
+	-				s			4,5,6 N = 11		-	
ļ	F		Below 0.8m: yellow-brown mottled red			0.05					
ŀ	-1			\langle / \rangle	A/E	0.95 1.0				-1	
ļ	Ę					1.1					
ŀ	-									-	
F	F			\langle / \rangle		1.5					
- 	-		Below 1.5m: rea-brown motiled grey, very stim					689		-	
F	[S			N = 17			
ł	-			\langle / \rangle		1.95				-	
ŀ	2										
ł	[
ŀ	-									-	
ł											
-15	-			$\langle / /$						-	
t	ŀ			///							
ŀ	-3		Below 3.0m; trace fine to medium ironstone gravel			3.0				-3	
t	ŀ		Delow 3.0m. trace line to medium itolisione graver					7.10.16			
-	-				S			N = 26		-	
ţ	ļ			\langle / \rangle		3.45				-	
ŀ	-									-	
-4	L .										
ŀ	-									-	
ţ	-4									-4	
ŀ	-									-	
ļ	ļ			///							
ŀ	- 4	4.5	Sandy CLAY CL-CI: low to medium plasticity, pale grey	·/·		4.5				-	
13	ļ		with some orange-brown, w <pl, extremely="" relict="" rock="" sandstone<="" stiff,="" td="" texture,="" very="" weathered="" with=""><td>\././</td><td>s</td><td></td><td></td><td>19,17,14/100</td><td></td><td>ļ </td><td></td></pl,>	\././	s			19,17,14/100		ļ	
ŀ	4.	.85		<u></u>				reiusai			
ļ	-5	4.9	SANDSTONE: pale grey, very low to low strength, possibly Mittagong Formation or Hawkesbury Sandstone			-4.9-				-5	
ŀ	-		Bore discontinued at 4.9m								
ļ	F									-	
ł	ŀ									-	
-									•	· ·	

RIG: Comacchio 205 DRILLER: Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 4.5m WATER OBSERVATIONS: No free groundwater observed

LOGGED: TM

SAMPLING & IN SITU TES A Auger sample G Gas sample B Bulk sample P Piston sample	FING LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa)	- Develop Portner
B Buik Sample P Priston sample BLK Block sample U _x Tube sample (x mm C Core drilling W Water sample D Disturbed sample ▷ Water seep E Environmental sample ፮ Water level	dia.) PL(A) Point load axial test Is(30) (MPa) dia.) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)	Geotechnics Environment Groundwate

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 18.6 AHD Meadowbank P.S. Repurpose to Open Space LOCATION: Meadowbank Public School, Ryde

EASTING: 323932.8 **NORTHING:** 6256349.8 DIP/AZIMUTH: 90°/--

BORE No: BH08 **PROJECT No: 99856.00** DATE: 20/1/2021 SHEET 1 OF 1

Γ			Description	ic.		San	npling &	& In Situ Testing	~	Well	
R		epth m)	of	aph Log	e	ţ	ple	Reculte &	Vate	Constructio	n
		,	Strata	<u>م</u> _	T _Z	Dep	Sam	Comments	5	Details	
F			FILL/TOPSOIL/CLAY: medium plasticity, brown, with silt,	\boxtimes	A/E	0.0					
[[0.2	trace rootlets,w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>XX</td><td></td><td>0.1</td><td></td><td></td><td></td><td>-</td><td></td></pl,>	XX		0.1				-	
ŀ	-		CLAY CI-CH: medium to high plasticity, red-brown, w <pl, very stiff, residual</pl, 	\mathbb{V}	1	0.2				-	
ł	-			\mathbb{V}		0.4				-	
ł	-			\mathbb{V}/\mathbb{V}		0.5				-	
-÷	2-			\mathbb{V}	1		В	Bulk sample 0.2-1.0m		-	
t	t		Below 0.7m: pale grey mottled red-brown	\mathbb{V}/\mathbb{I}	s			9,7,13 N = 20			
ļ				V/	1					-	
ŀ	- 1			\mathbb{V}		0.95				-1	
ł	-			\mathbb{V}/\mathbb{I}	AVE	1.1				-	
ł	-			\mathbb{V}/\mathbb{V}	{					-	
ł	F			\mathbb{Z}	1					-	
t	t	15		\mathbb{V}		15					
Ę	_	1.5	CLAY CL: low plasticity, pale grey and yellow-brown,	\mathbb{V}	}	1.5				_	
ļ	-		w <pl, extremely="" hard,="" relict="" rock="" shale<="" td="" texture,="" weathered=""><td>\mathbb{Y}/\mathbb{Z}</td><td></td><td></td><td></td><td>10,17,22</td><td></td><td>-</td><td></td></pl,>	\mathbb{Y}/\mathbb{Z}				10,17,22		-	
ł	-			\mathbb{V}/\mathbb{I}				N = 39		-	
ł	-			$\langle / / \rangle$		1 95				-	
ł	-2	2.0	SHALE: dark grey and orange brown, very low strength,	<u> </u>	4					-2	
ŀ	Ī		Ashfield Shale		ł					-	
	[ł					_	
ŀ	-				1					-	
ł	-				ł					-	
-4	2-			E	ł					-	
ł	-			<u> </u>	ł					-	
Ī				F===		2.8					
ļ	-3	3.0				3.0		25/100		-3	
ŀ	-	3.1	SHALE: dark grey, low strength, Ashfield Shale		s	-3.1-		refusal			
ł	-		Auger refusal on low strength shale							-	
ł	-		5							-	
ŀ	Ē									-	
Ľ	2									_	
ļ	-									-	
ł	-									-	
ł	-									-	
ł	-4									-4	
Ī	Ī										
[[
ŀ	ł										
ł	ł									-	
ł	±-										
ŀ	ł									†	
Ī	Į										

DRILLER: Geosense RIG: Hanjin D&B-8D TYPE OF BORING: Solid Flight Auger (TC bit) to 3.0m **REMARKS:**

LOGGED: TM

	JAIV	IPLING	0 & IN SITU LESTING		ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.5 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323903.3 NORTHING: 6256459.7 **DIP/AZIMUTH:** 90°/--

BORE No: BH09 PROJECT No: 99856.00 DATE: 21/1/2021 SHEET 1 OF 1

			Description	. <u>ല</u>		Sam	npling &	& In Situ Testing	L	Well	
ā	z	Depth (m)	of	raph Log	be	oth	ple	Results &	Vate	Constructio	n
		()	Strata	G	Ţ	De	San	Comments	_	Details	
F	_		FILL/TOPSOIL/Silty CLAY: medium plasticity, brown,	\mathcal{M}	A/E	0.0				-	
+	-		trace rootiets, w <rl, a="" condition<="" generally="" in="" little="" td=""><td>KXX</td><td>{</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></rl,>	KXX	{	-				-	
ł	-			KK X						-	
t	9			KK	A/E	0.4				-	
F	-	0.6		ľŊ		0.5				-	
ł	+		CLAY CI-CH: medium to high plasticity, red-brown, trace fine to medium ironstone gravel, w <pl, apparently="" stiff,<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl,>							-	
ł	-		residual	\langle / \rangle						-	
Į	Ĺ	1			A/E	0.9				-	
ł	-					1.0				-	
ł	ł			Y//						-	
ł	F			\langle / \rangle						-	
Ĺ	15	1.5		///	A/E	1.4 				-	
ł	-		Bore discontinued at 1.5m							-	
ł	ł									-	
İ	Į									-	
ł	+	2								-2	
ł	ŀ									-	
t	t									-	
ł	-									-	
┢	4-									-	
ł	ł									-	
F										-	
ł	ł									-	
ł	ł	3								-3	
ļ	Į									-	
+	+									-	
ł	ł									-	
ľ	Ę-									-	
+	-									-	
ł	ł									-	
ł	t	4								-	
F	F	4								- 4	
$\left \right $	ł									-	
ł	ł									-	
ļ	12									-	
+	·									-	
ł	ł									-	
ļ	ļ									-	
L											

RIG: Comacchio 205 **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 1.5m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

LOGGED: TM

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 18.2 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323956.1 NORTHING: 6256439 **DIP/AZIMUTH:** 90°/--

BORE No: BH10 PROJECT No: 99856.00 DATE: 20/1/2021 SHEET 1 OF 1

Γ		Description	Li		Sampling & In Situ Testing			L	Well	
R	Uepth (m)	of	iraph Log	be	pth	nple	Results &	Wate	Constructio	n
		Strata	G	Ţ	De	San	Comments	-	Details	
-9	- 0.1 2-	ASPHALTIC CONCRETE CLAY CH: high plasticity, red-brown, w <pl apparently<br="">stiff, residual</pl>		A/E	0.1 0.2				-	
-	-			A/E	0.4 0.5				-	
ŀ	-	Below 0.8m: trace fine to medium ironstone gravel		AVE	0.9				-	
	-1 1.0 - - -	Bore discontinued at 1.0m Target depth reached			—1.0—				-	
-	-								-	
-	-2								-2	
- 4	2 -								-	
-	-								-	
-	- 3								- 3	
	-								-	
-	-								-	
	- 4								-4	
-7	-								-	
-	-								-	
-	-								-	

RIG: Hanjin D&B-8D **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 1.0m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

₽

Core drilling Disturbed sample Environmental sample

CDE

LOGGED: TM

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.3 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323902.3 NORTHING: 6256421.6 **DIP/AZIMUTH:** 90°/--

BORE No: BH11 PROJECT No: 99856.00 DATE: 20/1/2021 SHEET 1 OF 1

Γ		Description	ji		Sam	Sampling & In Situ Testing			Well	
Я	Deptn (m)	of	brapt Log	/pe	epth	nple	Results &	Wate	Construction	n
		Strata		F .		Sar	Comments		Details	
ł	-	FILL/I OPSOIL/Silty CLAY: low to medium plasticity, brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E*</td><td>0.0</td><td></td><td></td><td></td><td>-</td><td></td></pl,>		A/E*	0.0				-	
	- 0.2	FILL/Sandy CLAY: low plasticity, brown, trace fine to medium sandstone gravel and concrete and tile fragments, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.4</td><td></td><td></td><td></td><td>- - - -</td><td></td></pl,>		A/E	0.4				- - - -	
-	- - - 1 -			A/E	0.9 1.0				- - - 1 -	
15	- 1.3 - - -	CLAY CI-CH: medium to high plasticity, yellow-brown mottled orange, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E</td><td>1.4 1.5</td><td></td><td></td><td></td><td>- - - -</td><td></td></pl,>		A/E	1.4 1.5				- - - -	
ł	-			A/E	1.9				-	
Ì	-2 2.0	Bore discontinued at 2.0m	<u> </u>		-2.0-				-2	
14	-	Target depth reached							-	
-	-3								- -3 -	
13	-								-	
2	- 4 -								-4	
-	-								-	

RIG: Hanjin D&B-8D **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS: *Field replicate BD1/20210120 taken from 0-0.1m

CDE

LOGGED: TM

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners Core drilling Disturbed sample Environmental sample ₽ Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 16.3 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323902.3 NORTHING: 6256421.6 **DIP/AZIMUTH:** 90°/--

BORE No: BH11B PROJECT No: 99856.00 DATE: 21/1/2021 SHEET 1 OF 1

Γ		Description	<u>.</u>		Sam	npling &	ng & In Situ Testing		Well	
ā	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Constructior Details	ı
	- 0.2 2- 	FILL/TOPSOIL/Silty CLAY: low to medium plasticity, brown, trace rootlets, w <pl, a="" condition<br="" firm="" generally="" in="">FILL/Sandy CLAY: low plasticity, brown, trace fine to medium sandstone gravel and concrete and tile fragments, w<pl, a="" condition<="" generally="" in="" soft="" td=""><td></td><td>A/E*</td><td>0.2</td><td>В</td><td>Bulk sample 0.2-1.2m</td><td></td><td>- - - - - - - 1</td><td></td></pl,></pl,>		A/E*	0.2	В	Bulk sample 0.2-1.2m		- - - - - - - 1	
	- 1.2 2 - - - - - - - - - - - - - - - - - -	Bore discontinued at 1.2m Target depth reached			-1.2-				-2	
	- - - - - - - - - - - - - -									
	- 2 - - - - - - - - - - - - - - - - - -									
									-	

RIG: Comacchio 205 **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 1.2m WATER OBSERVATIONS: No free groundwater observed REMARKS: *Field replicate BD8/20210121 taken from 0.4-0.5m LOGGED: TM

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

CLIENT: PROJECT: LOCATION:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 17.3 AHD Meadowbank P.S. Repurpose to Open Space Meadowbank Public School, Ryde

EASTING: 323900.6 NORTHING: 6256371.7 **DIP/AZIMUTH:** 90°/--

BORE No: BH12 PROJECT No: 99856.00 DATE: 20/1/2021 SHEET 1 OF 1

		Description	lic		Sarr	npling	& In Situ Testing	L.	Well	
님	Depth (m)	of	raph Log	be	pth	Jple	Results &	Nate	Constructio	n
	. ,	Strata	U	L →	ā	San	Comments	ĺ	Details	
ŀ	0.05	MULCH: wood chips	XX	A/E	0.0				-	
	- 03	FILL/ SILT: low plasticity, dark brown, with clay, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>\bigotimes</td><td>></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl,>	\bigotimes	>					-	
-	- 0.0	CLAY CI: medium plasticity, with tree roots, w <pl, apparently stiff, residual</pl, 	\langle / \rangle		0.4				-	
ł	-				0.5				-	
ţ	07								-	
ł	-	CLAY CI-CH: medium to high plasticity, red-brown, w <pl apparently="" residual<="" stiff,="" td=""><td>$\langle / /$</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl>	$\langle / /$						-	
ł	-			A/E	0.9				-	
ļ	-1		\mathbb{V}		1.0				-1	
ł	-								-	
-16	-				1.4				-	
ł	- 1.5	Bore discontinued at 1.5m	<u> </u>	A/E*	-1.5-					
ţ	ļ	Target depth reached							-	
ł	-								-	
ł	-								-	
	-2								-2	
ł	-								-	
15	E .								-	
	[-	
ł	-								-	
ţ	[-	
ł	-								-	
ł	-3								-3	
ţ	[-	
-4	-								-	
ł	-								-	
ļ	[-	
ł	-								-	
t									-	
	-4								-4	
ł	-								-	
									-	
ŀ	ŀ								-	
ł	-								-	
ţ	ļ								-	
-	-								-	
ŀ	-								-	
<u> </u>	L	1								

RIG: Hanjin D&B-8D **DRILLER:** Geosense TYPE OF BORING: Solid Flight Auger (TC bit) to 1.5m WATER OBSERVATIONS: No free groundwater observed REMARKS: *Field replicate BD2/20210120 taken from 1.4-1.5m

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

LOGGED: TM

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In the grained solis (>35% II	In	oils (>35% fines)	ne grained soils
-------------------------------	----	-------------------	------------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils	(>65% coarse)
- with coarser fraction	

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	verv rouah

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

oo	
A. A. A. A A. D. A. A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

 >
 >

 >
 >

 +
 +

 +
 +

 +
 +

 +
 +

 .
 .

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix G

Laboratory Certificates of Analysis, Chain of Custodies

and Sample Receipt Advices

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 260797

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Lisa Teng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	99856.01, Meadowbank Public School
Number of Samples	4 water
Date samples received	02/02/2021
Date completed instructions received	03/02/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	09/02/2021	
Date of Issue	09/02/2021	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 260797 Revision No: R00

Page | 1 of 22

Client Reference: 99856.01, Meadowbank Public School

vTRH(C6-C10)/BTEXN in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	03/02/2021
Date analysed	-	03/02/2021
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	103
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	100
svTRH (C10-C40) in Water		
--	-------	------------
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	05/02/2021
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	100

PAHs in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	05/02/2021
Naphthalene	μg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	μg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	93

Organochlorine Pesticides in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	05/02/2021
alpha-BHC	µg/L	<0.2
НСВ	µg/L	<0.2
beta-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	μg/L	<0.2
Surrogate TCMX	%	78

OP Pesticides in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	05/02/2021
Dichlorvos	µg/L	<0.2
Dimethoate	µg/L	<0.2
Diazinon	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Ronnel	μg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	µg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Parathion	µg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Ethion	µg/L	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2
Surrogate TCMX	%	78

PCBs in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	05/02/2021
Aroclor 1016	μg/L	<2
Aroclor 1221	µg/L	<2
Aroclor 1232	μg/L	<2
Aroclor 1242	µg/L	<2
Aroclor 1248	µg/L	<2
Aroclor 1254	µg/L	<2
Aroclor 1260	µg/L	<2
Surrogate TCMX	%	78

Total Phenolics in Water		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date extracted	-	04/02/2021
Date analysed	-	04/02/2021
Total Phenolics (as Phenol)	mg/L	<0.05

HM in water - dissolved		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date prepared	-	04/02/2021
Date analysed	-	04/02/2021
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	0.2
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	1
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	3
Zinc-Dissolved	µg/L	80

Cations in water Dissolved		
Our Reference		260797-1
Your Reference	UNITS	MW5
Date Sampled		02/02/2021
Type of sample		water
Date digested	-	09/02/2021
Date analysed	-	09/02/2021
Calcium - Dissolved	mg/L	49
Magnesium - Dissolved	mg/L	17
Hardness	mgCaCO 3 /L	190

Method ID	Methodology Summary
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/02/2021	[NT]		[NT]	[NT]	03/02/2021	[NT]
Date analysed	-			03/02/2021	[NT]		[NT]	[NT]	03/02/2021	[NT]
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	106	[NT]
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	106	[NT]
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113	[NT]
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	[NT]
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	[NT]
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	103	[NT]
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	[NT]
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	103	[NT]		[NT]	[NT]	98	[NT]
Surrogate toluene-d8	%		Org-023	103	[NT]		[NT]	[NT]	97	[NT]
Surrogate 4-BFB	%		Org-023	100	[NT]		[NT]	[NT]	88	[NT]

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/02/2021	1	04/02/2021	04/02/2021		04/02/2021	
Date analysed	-			05/02/2021	1	05/02/2021	05/02/2021		05/02/2021	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	88	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	1	<100	<100	0	84	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	77	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	1	<50	<50	0	88	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	84	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	77	
Surrogate o-Terphenyl	%		Org-020	97	1	100	94	6	91	[NT]

QUALITY	QUALITY CONTROL: PAHs in Water					Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/02/2021	1	04/02/2021	04/02/2021		04/02/2021	
Date analysed	-			05/02/2021	1	05/02/2021	05/02/2021		05/02/2021	
Naphthalene	µg/L	1	Org-022/025	<1	1	<1	<1	0	83	
Acenaphthylene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Acenaphthene	µg/L	1	Org-022/025	<1	1	<1	<1	0	77	
Fluorene	µg/L	1	Org-022/025	<1	1	<1	<1	0	95	
Phenanthrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	102	
Anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Fluoranthene	µg/L	1	Org-022/025	<1	1	<1	<1	0	105	
Pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	98	
Benzo(a)anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Chrysene	µg/L	1	Org-022/025	<1	1	<1	<1	0	88	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-022/025	<2	1	<2	<2	0	[NT]	
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	87	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Benzo(g,h,i)perylene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	93	1	93	136	38	120	[NT]

QUALITY CONTRO	DL: Organoc	hlorine P	esticides in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/02/2021	1	04/02/2021	04/02/2021		04/02/2021	[NT]
Date analysed	-			05/02/2021	1	05/02/2021	05/02/2021		05/02/2021	[NT]
alpha-BHC	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	86	[NT]
НСВ	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
beta-BHC	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	87	[NT]
gamma-BHC	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Heptachlor	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	102	[NT]
delta-BHC	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Aldrin	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	105	[NT]
Heptachlor Epoxide	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	108	[NT]
gamma-Chlordane	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
alpha-Chlordane	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan I	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDE	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	122	[NT]
Dieldrin	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	124	[NT]
Endrin	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	114	[NT]
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDD	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	96	[NT]
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDT	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	113	[NT]
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	79	1	78	92	16	92	[NT]

QUALITY CO	ONTROL: OF	Pesticid	es in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/02/2021	1	04/02/2021	04/02/2021		04/02/2021	
Date analysed	-			05/02/2021	1	05/02/2021	05/02/2021		05/02/2021	
Dichlorvos	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	90	
Dimethoate	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Diazinon	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	107	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	82	
Malathion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	73	
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	96	
Parathion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	79	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	94	
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Surrogate TCMX	%		Org-022/025	79	1	78	92	16	92	[NT]

QUALITY		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/02/2021	1	04/02/2021	04/02/2021		04/02/2021	[NT]
Date analysed	-			05/02/2021	1	05/02/2021	05/02/2021		05/02/2021	[NT]
Aroclor 1016	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1221	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1232	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1242	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1248	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1254	µg/L	2	Org-021	<2	1	<2	<2	0	120	[NT]
Aroclor 1260	µg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	79	1	78	92	16	92	[NT]

QUALITY CO		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021	[NT]
Date analysed	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CC		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021	[NT]
Date analysed	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	114	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	108	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	112	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	114	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	114	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	113	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]	[NT]	[NT]	[NT]	120	[NT]

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			09/02/2021	[NT]		[NT]	[NT]	09/02/2021	
Date analysed	-			09/02/2021	[NT]		[NT]	[NT]	09/02/2021	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	98	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

	Project No:	99856	5.01			Suburb):	Meadov	vbank		To:	Env	rolab Ser	vices	
	Project Name:	Mead	owbank Put	olic School		Order N	lumber					12 A	shley Str	eet, Chats	swood
	Project Manage	r:Lisa T	eng			Sample	er:	LT			Attn:	Attn: Ailen Hie			
	Emails:	lisa.t	eng@douc	laspartne	ers.com.au					Phone: 99106200					
	Date Required:	Stand	ard 🗆								Email:	<u>Ahio</u>	e@envire	olab.com	.au
	Prior Storage:	🗆 Esk	y 🗆 Fridç	ge 🗆 Sh	nelved	Do samp	oles contai	n 'potentia	' HBM?	Yes 🛛	No 🗆	(If YES, the	en handle, tr	ransport and	store in accordance with FPM HAZID)
	Comple	Lob	npled	Sample Type	Container Type					Analytes			r	 	
	ID	ID	Date Sar	S - soil W - water	G - glass P - plastic	Combo 8	OCP/OPF PCB	TRH and BTEX	HAA	Total Phenols	Asbestos 500 ml	ploH			Notes/preservation
	MW5	Ì	02/02/21	W	G/P	x									
	TS	2	02/02/21	w	G							x			
	ТВ	З	02/02/21	W	G							x			
exha	BD1 /20210202	4	02102121	Ч	P										
														ຣກູ່ທີ່ເຮັດປ	AB 12 Ashley St
															Ph: (02) 9910 6200
															260797 02.02.2021
														Jime Re	eived: eived: 17-16
														Receiver	By: EC
														Cooling: (11-8°C.
														Security	ntact/Broken/None
															·
	PQL (S) mg/kg													C PQLs	req'd for all water analytes 🛛
	PQL = practical	quanti	tation limit	If none (given, defaul	t to Labor	atory Met	hod Dete	ction Limi	t	Lab R	eport/Re	ference N	No:	260797
	Total number of	f sampl	es in conta	ainer:	Reli	nguisheo	by:	T	Transpo	orted to la	boratory	by:			
	Send Results to	b: D	ouglas Parl	iners Ptv L	td Add	ress			!				Phone		Fax:
	Signed:				Received b	v: E	25 540	d	16.0	ake		Date & T	ime: ୯	2.02.20	21 1716.

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 260173

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Lisa Teng, Nicola Warton
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	99856.00, Meadowbank Public School
Number of Samples	29 soil
Date samples received	22/01/2021
Date completed instructions received	22/01/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 01/02/2021

 Date of Issue
 01/02/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Steven Luong, Organics Supervisor

vTRH(C6-C10)/BTEXN in Soil					_	
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	106	98	104	100	107
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	260173-6 BH4	260173-7 BH5	260173-8 BH5	260173-9 BH6	260173-10 BH6
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	260173-6 BH4 0.1-0.2	260173-7 BH5 0.4-0.5	260173-8 BH5 1.4-1.5	260173-9 BH6 0.4-0.5	260173-10 BH6 1.0-1.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	260173-6 BH4 0.1-0.2 20/01/2021	260173-7 BH5 0.4-0.5 20/01/2021	260173-8 BH5 1.4-1.5 20/01/2021	260173-9 BH6 0.4-0.5 21/01/2021	260173-10 BH6 1.0-1.1 21/01/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	260173-6 BH4 0.1-0.2 20/01/2021 soil	260173-7 BH5 0.4-0.5 20/01/2021 soil	260173-8 BH5 1.4-1.5 20/01/2021 soil	260173-9 BH6 0.4-0.5 21/01/2021 soil	260173-10 BH6 1.0-1.1 21/01/2021 soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS -	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	UNITS - - mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	UNITS - mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	UNITS - mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene	UNITS - - mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-6 BH4 0.1-0.2 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	260173-7 BH5 0.4-0.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	260173-8 BH5 1.4-1.5 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	260173-9 BH6 0.4-0.5 21/01/2021 soil 28/01/2021 29/01/2021 29/01/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	260173-10 BH6 1.0-1.1 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <3

vTRH(C6-C10)/BTEXN in Soil					_	
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	94	107	107	103	107
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	260173-16 BH10	260173-17 BH11	260173-18 BH11	260173-19 BH11	260173-20 BH12
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	260173-16 BH10 0.1-0.2	260173-17 BH11 0-0.1	260173-18 BH11 0.9-1.0	260173-19 BH11 1.9-2.0	260173-20 BH12 0-0.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	260173-16 BH10 0.1-0.2 21/01/2021	260173-17 BH11 0-0.1 20/01/2021	260173-18 BH11 0.9-1.0 20/01/2021	260173-19 BH11 1.9-2.0 20/01/2021	260173-20 BH12 0-0.1 20/01/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	260173-16 BH10 0.1-0.2 21/01/2021 soil	260173-17 BH11 0-0.1 20/01/2021 soil	260173-18 BH11 0.9-1.0 20/01/2021 soil	260173-19 BH11 1.9-2.0 20/01/2021 soil	260173-20 BH12 0-0.1 20/01/2021 soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS -	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	UNITS - - mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	UNITS - mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	UNITS - mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene	UNITS - - mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.5 <1	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2 <1 <2 <1	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 29/01/2021 29/01/2021 225 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	260173-16 BH10 0.1-0.2 21/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	260173-17 BH11 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	260173-18 BH11 0.9-1.0 20/01/2021 soil 28/01/2021 29/01/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	260173-19 BH11 1.9-2.0 20/01/2021 soil 28/01/2021 29/01/2021 29/01/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	260173-20 BH12 0-0.1 20/01/2021 soil 28/01/2021 29/01/2021 29/01/2021 29/01/2021 29/01/2021 29/01/2021 20/00

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		260173-21	260173-22	260173-24	260173-25
Your Reference	UNITS	BH12	BH12	TS1	TB1
Depth		0.4-0.5	1.4-1.5		
Date Sampled		20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	[NA]	[NA]
TRH C6 - C10	mg/kg	<25	<25	[NA]	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	[NA]
Benzene	mg/kg	<0.2	<0.2	102%	<0.2
Toluene	mg/kg	<0.5	<0.5	103%	<0.5
Ethylbenzene	mg/kg	<1	<1	104%	<1
m+p-xylene	mg/kg	<2	<2	103%	<2
o-Xylene	mg/kg	<1	<1	102%	<1
naphthalene	mg/kg	<1	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<3	<3	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	106	81	104	116

svTRH (C10-C40) in Soil						
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	110	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	150	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	150	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	100	<50	150	<50	<50
Surrogate o-Terphenyl	%	100	96	95	96	95
svTRH (C10-C40) in Soil						

Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
Your Reference	UNITS	BH4	BH5	BH5	BH6	BH6
Depth		0.1-0.2	0.4-0.5	1.4-1.5	0.4-0.5	1.0-1.1
Date Sampled		20/01/2021	20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	100	<50	<50	<50	<50
Surrogate o-Terphenyl	%	99	96	95	95	101

svTRH (C10-C40) in Soil						
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	120	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	160	<100	100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	160	<50	100	<50	<50
Surrogate o-Terphenyl	%	97	95	95	102	101

svTRH (C10-C40) in Soil						
Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		0.1-0.2	0-0.1	0.9-1.0	1.9-2.0	0-0.1
Date Sampled		21/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	290	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	280	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	340	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	620	<50	<50	<50	<50
Surrogate o-Terphenyl	%	96	95	93	95	93

svTRH (C10-C40) in Soil			
Our Reference		260173-21	260173-22
Your Reference	UNITS	BH12	BH12
Depth		0.4-0.5	1.4-1.5
Date Sampled		20/01/2021	20/01/2021
Type of sample		soil	soil
Date extracted	-	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021
TRH C10 - C14	mg/kg	<50	<50
TRH C15 - C28	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	94	93

PAHs in Soil						
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.7	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.4	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	4.0	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	89	84	85	86	84

PAHs in Soil						
Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
Your Reference	UNITS	BH4	BH5	BH5	BH6	BH6
Depth		0.1-0.2	0.4-0.5	1.4-1.5	0.4-0.5	1.0-1.1
Date Sampled		20/01/2021	20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.08	<0.05	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.3	<0.05	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	78	82	86	93	85

PAHs in Soil						
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	2.8	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	9.4	0.2	0.2	<0.1	<0.1
Pyrene	mg/kg	8.8	0.2	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	4.5	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	4.0	0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	7.8	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	5.1	0.1	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	2.8	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.8	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	3.5	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	51	0.69	0.52	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	7.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	7.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	7.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	93	87	90	94

PAHs in Soil						
Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		0.1-0.2	0-0.1	0.9-1.0	1.9-2.0	0-0.1
Date Sampled		21/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	0.2	<0.1	<0.1
Anthracene	mg/kg	<0.1	0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.7	0.4	<0.1	0.2
Pyrene	mg/kg	0.1	0.6	0.5	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	0.4	0.5	<0.1	0.1
Chrysene	mg/kg	<0.1	0.4	0.6	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.6	2	<0.2	0.2
Benzo(a)pyrene	mg/kg	<0.05	0.4	1.3	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	0.8	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	1.2	<0.1	0.1
Total +ve PAH's	mg/kg	0.3	3.9	7.4	<0.05	1.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	1.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.5	1.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.6	1.8	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	85	99	106	100	106

PAHs in Soil				
Our Reference		260173-21	260173-22	260173-23
Your Reference	UNITS	BH12	BH12	BD5/20200121
Depth		0.4-0.5	1.4-1.5	
Date Sampled		20/01/2021	20/01/2021	21/01/2021
Type of sample		soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	101	99

Organochlorine Pesticides in soil							
Our Reference		260173-1	260173-4	260173-6	260173-7	260173-9	
Your Reference	UNITS	BH1	BH3	BH4	BH5	BH6	
Depth		0.4-0.5	1.0-1.1	0.1-0.2	0.4-0.5	0.4-0.5	
Date Sampled		21/01/2021	21/01/2021	20/01/2021	20/01/2021	21/01/2021	
Type of sample		soil	soil	soil	soil	soil	
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021	
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate TCMX	%	95	100	97	95	93	

Organochlorine Pesticides in soil							
Our Reference		260173-11	260173-13	260173-14	260173-17	260173-18	
Your Reference	UNITS	BH7	BH8	BH9	BH11	BH11	
Depth		0.1-0.2	0-0.1	0.4-0.5	0-0.1	0.9-1.0	
Date Sampled		21/01/2021	20/01/2021	21/01/2021	20/01/2021	20/01/2021	
Type of sample		soil	soil	soil	soil	soil	
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021	
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate TCMX	%	94	96	98	104	110	

Organochlorine Pesticides in soil							
Our Reference		260173-20	260173-21				
Your Reference	UNITS	BH12	BH12				
Depth		0-0.1	0.4-0.5				
Date Sampled		20/01/2021	20/01/2021				
Type of sample		soil	soil				
Date extracted	-	28/01/2021	28/01/2021				
Date analysed	-	30/01/2021	30/01/2021				
alpha-BHC	mg/kg	<0.1	<0.1				
НСВ	mg/kg	<0.1	<0.1				
beta-BHC	mg/kg	<0.1	<0.1				
gamma-BHC	mg/kg	<0.1	<0.1				
Heptachlor	mg/kg	<0.1	<0.1				
delta-BHC	mg/kg	<0.1	<0.1				
Aldrin	mg/kg	<0.1	<0.1				
Heptachlor Epoxide	mg/kg	<0.1	<0.1				
gamma-Chlordane	mg/kg	<0.1	<0.1				
alpha-chlordane	mg/kg	<0.1	<0.1				
Endosulfan I	mg/kg	<0.1	<0.1				
pp-DDE	mg/kg	<0.1	<0.1				
Dieldrin	mg/kg	<0.1	<0.1				
Endrin	mg/kg	<0.1	<0.1				
Endosulfan II	mg/kg	<0.1	<0.1				
pp-DDD	mg/kg	<0.1	<0.1				
Endrin Aldehyde	mg/kg	<0.1	<0.1				
pp-DDT	mg/kg	<0.1	<0.1				
Endosulfan Sulphate	mg/kg	<0.1	<0.1				
Methoxychlor	mg/kg	<0.1	<0.1				
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1				
Surrogate TCMX	%	107	110				
Organophosphorus Pesticides in Soil							
-------------------------------------	-------	------------	------------	------------	------------	------------	
Our Reference		260173-1	260173-4	260173-6	260173-7	260173-9	
Your Reference	UNITS	BH1	BH3	BH4	BH5	BH6	
Depth		0.4-0.5	1.0-1.1	0.1-0.2	0.4-0.5	0.4-0.5	
Date Sampled		21/01/2021	21/01/2021	20/01/2021	20/01/2021	21/01/2021	
Type of sample		soil	soil	soil	soil	soil	
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021	
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate TCMX	%	95	100	97	95	93	

Organophosphorus Pesticides in Soil						
Our Reference		260173-11	260173-13	260173-14	260173-17	260173-18
Your Reference	UNITS	BH7	BH8	BH9	BH11	BH11
Depth		0.1-0.2	0-0.1	0.4-0.5	0-0.1	0.9-1.0
Date Sampled		21/01/2021	20/01/2021	21/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	96	98	104	110

Organophosphorus Pesticides in Soil			
Our Reference		260173-20	260173-21
Your Reference	UNITS	BH12	BH12
Depth		0-0.1	0.4-0.5
Date Sampled		20/01/2021	20/01/2021
Type of sample		soil	soil
Date extracted	-	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	107	110

PCBs in Soil						
Our Reference		260173-1	260173-4	260173-6	260173-7	260173-9
Your Reference	UNITS	BH1	BH3	BH4	BH5	BH6
Depth		0.4-0.5	1.0-1.1	0.1-0.2	0.4-0.5	0.4-0.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	20/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	100	97	95	93

PCBS IN SOIL						
Our Reference		260173-11	260173-13	260173-14	260173-17	260173-18
Your Reference	UNITS	BH7	BH8	BH9	BH11	BH11
Depth		0.1-0.2	0-0.1	0.4-0.5	0-0.1	0.9-1.0
Date Sampled		21/01/2021	20/01/2021	21/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021	30/01/2021	30/01/2021	30/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	96	98	104	110

PCBs in Soil			
Our Reference		260173-20	260173-21
Your Reference	UNITS	BH12	BH12
Depth		0-0.1	0.4-0.5
Date Sampled		20/01/2021	20/01/2021
Type of sample		soil	soil
Date extracted	-	28/01/2021	28/01/2021
Date analysed	-	30/01/2021	30/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	107	110

Acid Extractable metals in soil						
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	<4	<4	<4	4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	5	11	28	9
Copper	mg/kg	8	15	9	16	6
Lead	mg/kg	27	11	10	18	10
Mercury	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Nickel	mg/kg	4	2	3	10	1
Zinc	mg/kg	46	18	8	15	2

Acid Extractable metals in soil						
Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
Your Reference	UNITS	BH4	BH5	BH5	BH6	BH6
Depth		0.1-0.2	0.4-0.5	1.4-1.5	0.4-0.5	1.0-1.1
Date Sampled		20/01/2021	20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	<4	5	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	12	12	9	8
Copper	mg/kg	54	7	4	9	13
Lead	mg/kg	2	27	11	17	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	41	2	1	5	1
Zinc	mg/kg	15	18	5	13	13

Acid Extractable metals in soil						
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	<4	<4	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	0.8	<0.4	<0.4
Chromium	mg/kg	9	9	14	8	8
Copper	mg/kg	35	5	45	6	9
Lead	mg/kg	35	8	90	13	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	2	5	4	1
Zinc	mg/kg	83	6	150	10	7

Acid Extractable metals in soil						
Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		0.1-0.2	0-0.1	0.9-1.0	1.9-2.0	0-0.1
Date Sampled		21/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	<4	4	<4	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	10	7	14	11
Copper	mg/kg	9	21	5	9	10
Lead	mg/kg	13	34	61	13	76
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	7	1	2	3
Zinc	mg/kg	12	79	53	9	19

Acid Extractable metals in soil					
Our Reference		260173-21	260173-22	260173-23	260173-30
Your Reference	UNITS	BH12	BH12	BD5/20200121	BH12 - [TRIPLICATE]
Depth		0.4-0.5	1.4-1.5		0-0.1
Date Sampled		20/01/2021	20/01/2021	21/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	7	5	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	8	14	10
Copper	mg/kg	8	10	9	6
Lead	mg/kg	17	11	17	24
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	<1	6	3
Zinc	mg/kg	8	5	8	19

Misc Soil - Inorg						
Our Reference		260173-1	260173-4	260173-6	260173-7	260173-9
Your Reference	UNITS	BH1	BH3	BH4	BH5	BH6
Depth		0.4-0.5	1.0-1.1	0.1-0.2	0.4-0.5	0.4-0.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	20/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		260173-11	260173-13	260173-14	260173-17	260173-18
Your Reference	UNITS	BH7	BH8	BH9	BH11	BH11
Depth		0.1-0.2	0-0.1	0.4-0.5	0-0.1	0.9-1.0
Date Sampled		21/01/2021	20/01/2021	21/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg					-	
Our Reference		260173-20	260173-21			
Your Reference	UNITS	BH12	BH12			
Depth		0-0.1	0.4-0.5			
Date Sampled		20/01/2021	20/01/2021			
Type of sample		soil	soil			
Date prepared	-	28/01/2021	28/01/2021			
Date analysed	-	28/01/2021	28/01/2021			

<5

<5

mg/kg

Total Phenolics (as Phenol)

Moisture						
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Moisture	%	10	15	16	21	24
Moisture						
Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
Your Reference	UNITS	BH4	BH5	BH5	BH6	BH6
Depth		0.1-0.2	0.4-0.5	1.4-1.5	0.4-0.5	1.0-1.1
Date Sampled		20/01/2021	20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Moisture	%	9.9	12	12	23	18
Moisture						
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Moisture	%	32	18	15	34	14
Moisture						
Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		0.1-0.2	0-0.1	0.9-1.0	1.9-2.0	0-0.1
Date Sampled		21/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Type of sample						
		soil	soil	soil	soil	soil
Date prepared	-	soil 28/01/2021	soil 28/01/2021	soil 28/01/2021	soil 28/01/2021	soil 28/01/2021
Date prepared Date analysed	-	soil 28/01/2021 29/01/2021	soil 28/01/2021 29/01/2021	soil 28/01/2021 29/01/2021	soil 28/01/2021 29/01/2021	soil 28/01/2021 29/01/2021

Moisture				
Our Reference		260173-21	260173-22	260173-23
Your Reference	UNITS	BH12	BH12	BD5/20200121
Depth		0.4-0.5	1.4-1.5	
Date Sampled		20/01/2021	20/01/2021	21/01/2021
Type of sample		soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021
Moisture	%	13	16	19

Asbestos ID - soils						
Our Reference		260173-1	260173-2	260173-3	260173-4	260173-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH3
Depth		0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	2.0-2.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 15g	Approx. 65g	Approx. 60g
Sample Description	-	Brown clayey soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		260173-6	260173-7	260173-8	260173-9	260173-10
Your Reference	UNITS	BH4	BH5	BH5	BH6	BH6
Depth		0.1-0.2	0.4-0.5	1.4-1.5	0.4-0.5	1.0-1.1
Date Sampled		20/01/2021	20/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Sample mass tested	g	Approx. 45g	Approx. 45g	Approx. 45g	Approx. 50g	Approx. 55g
Sample Description	-	Brown clayey soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos detected	No asbestos

Asbestos ID - soils						
Our Reference		260173-11	260173-12	260173-13	260173-14	260173-15
Your Reference	UNITS	BH7	BH7	BH8	BH9	BH9
Depth		0.1-0.2	1.0-1.1	0-0.1	0.4-0.5	1.4-1.5
Date Sampled		21/01/2021	21/01/2021	20/01/2021	21/01/2021	21/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Sample mass tested	g	Approx. 15g	Approx. 80g	Approx. 30g	Approx. 40g	Approx. 50g
Sample Description	-	Brown fine- grained soil, rocks & debris	Brown clayey soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						i de la companya de l
Our Reference		260173-16	260173-17	260173-18	260173-19	260173-20
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		0.1-0.2	0-0.1	0.9-1.0	1.9-2.0	0-0.1
Date Sampled		21/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Sample mass tested	g	Approx. 50g	Approx. 40g	Approx. 45g	Approx. 85g	Approx. 30g
Sample Description	-	Brown clayey soil & rocks	Brown clayey soil & rocks	Brown fine- grained soil & rocks	Brown clayey soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils			
Our Reference		260173-21	260173-22
Your Reference	UNITS	BH12	BH12
Depth		0.4-0.5	1.4-1.5
Date Sampled		20/01/2021	20/01/2021
Type of sample		soil	soil
Date analysed	-	29/01/2021	29/01/2021
Sample mass tested	g	Approx. 40g	Approx. 50g
Sample Description	-	Brown clayey soil & rocks	Brown clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Misc Inorg - Soil				
Our Reference		260173-2	260173-8	260173-22
Your Reference	UNITS	BH1	BH5	BH12
Depth		1.0-1.1	1.4-1.5	1.4-1.5
Date Sampled		21/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	6.5	5.3	4.6

CEC				
Our Reference		260173-2	260173-8	260173-22
Your Reference	UNITS	BH1	BH5	BH12
Depth		1.0-1.1	1.4-1.5	1.4-1.5
Date Sampled		21/01/2021	20/01/2021	20/01/2021
Type of sample		soil	soil	soil
Date prepared	-	01/02/2021	01/02/2021	01/02/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021
Exchangeable Ca	meq/100g	6.7	2.0	1.7
Exchangeable K	meq/100g	0.3	0.5	0.4
Exchangeable Mg	meq/100g	4.7	2.1	2.1
Exchangeable Na	meq/100g	0.98	0.19	0.30
Cation Exchange Capacity	meq/100g	13	4.8	4.6

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate Spike Recov				covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			29/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			01/02/2021	1	29/01/2021	29/01/2021		29/01/2021	29/01/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	121	109
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	121	109
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	115	104
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	118	104
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	134	121
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	120	109
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	124	112
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	114	1	106	99	7	113	101

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	260173-21
Date extracted	-			[NT]	11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			[NT]	11	29/01/2021	29/01/2021		29/01/2021	29/01/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0	102	121
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0	102	121
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0	98	115
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0	98	118
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	113	133
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0	101	119
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	105	124
naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	94	94	0	96	109

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	20	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	20	29/01/2021	29/01/2021		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	20	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	20	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	20	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	20	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	20	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	20	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	20	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-023	[NT]	20	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	20	103	107	4	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			29/01/2021	1	29/01/2021	30/01/2021		29/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	101	95
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	100	96
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	92	84
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	101	95
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	100	<100	0	100	96
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	92	84
Surrogate o-Terphenyl	%		Org-020	91	1	100	94	6	109	96

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	260173-21
Date extracted	-			[NT]	11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			[NT]	11	30/01/2021	30/01/2021		29/01/2021	30/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0	101	95
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	140	33	99	93
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	120	180	40	122	111
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0	101	95
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	160	270	51	99	93
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	<100	0	122	111
Surrogate o-Terphenyl	%		Org-020	[NT]	11	97	97	0	119	114

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	20	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	20	30/01/2021	30/01/2021		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	20	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	20	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	20	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	20	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	20	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	20	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	20	93	96	3	[NT]	[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			30/01/2021	1	30/01/2021	30/01/2021		30/01/2021	30/01/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	101
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	107
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	111	109
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.6	0.6	0	104	109
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.7	0.6	15	109	110
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.4	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.4	0	127	129
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.7	0.8	13	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.4	0.5	22	103	117
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.3	40	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.3	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	105	1	89	85	5	85	83

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	260173-21
Date extracted	-			[NT]	11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			[NT]	11	30/01/2021	30/01/2021		30/01/2021	30/01/2021
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	94	108
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	11	0.4	0.5	22	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	108	109
Fluorene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	109	114
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	11	2.8	2.9	4	113	105
Anthracene	mg/kg	0.1	Org-022/025	[NT]	11	0.7	0.5	33	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	11	9.4	11	16	109	100
Pyrene	mg/kg	0.1	Org-022/025	[NT]	11	8.8	9.9	12	105	96
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	4.5	6.1	30	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	11	4.0	5.8	37	131	133
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	11	7.8	10	25	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	11	5.1	6.0	16	125	125
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	11	2.8	3.3	16	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	0.8	1.1	32	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	11	3.5	3.8	8	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	11	96	97	1	87	87

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				20	28/01/2021	28/01/2021			[NT]
Date analysed	-				20	30/01/2021	30/01/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025		20	0.2	0.2	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025		20	0.2	0.2	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		20	0.1	0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025		20	0.2	0.1	67		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		20	0.2	0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		20	0.2	0.1	67		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		20	0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	20	106	97	9	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			30/01/2021	1	30/01/2021	30/01/2021		30/01/2021	30/01/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	108
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	104
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	99
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	81
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	120
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	111
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	85
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	98
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	110
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	105
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	107	1	95	99	4	91	94

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-				11	30/01/2021	30/01/2021		[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
НСВ	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	11	94	100	6	[NT]	[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			30/01/2021	1	30/01/2021	30/01/2021		30/01/2021	30/01/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	100
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	104
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	101
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	72
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	101
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	102
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	117
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	107	1	95	99	4	91	94

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-				11	30/01/2021	30/01/2021		[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		11	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		11	94	100	6	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4
Date extracted	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			30/01/2021	1	30/01/2021	30/01/2021		30/01/2021	30/01/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	120	120
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	107	1	95	99	4	91	94

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	11	30/01/2021	30/01/2021		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	11	94	100	6	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	260173-4		
Date prepared	-			29/01/2021	1	29/01/2021	29/01/2021		29/01/2021	29/01/2021		
Date analysed	-			31/01/2021	1	31/01/2021	31/01/2021		31/01/2021	31/01/2021		
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	99	73		
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	94	71		
Chromium	mg/kg	1	Metals-020	<1	1	7	9	25	96	86		
Copper	mg/kg	1	Metals-020	<1	1	8	9	12	97	106		
Lead	mg/kg	1	Metals-020	<1	1	27	31	14	96	78		
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	110	126		
Nickel	mg/kg	1	Metals-020	<1	1	4	5	22	98	78		
Zinc	mg/kg	1	Metals-020	<1	1	46	47	2	100	73		

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	260173-21
Date prepared	-			[NT]	11	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			[NT]	11	31/01/2021	31/01/2021		31/01/2021	31/01/2021
Arsenic	mg/kg	4	Metals-020	[NT]	11	<4	<4	0	97	#
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	92	73
Chromium	mg/kg	1	Metals-020	[NT]	11	9	8	12	95	70
Copper	mg/kg	1	Metals-020	[NT]	11	35	30	15	95	84
Lead	mg/kg	1	Metals-020	[NT]	11	35	28	22	94	#
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	119	79
Nickel	mg/kg	1	Metals-020	[NT]	11	5	4	22	97	#
Zinc	mg/kg	1	Metals-020	[NT]	11	83	69	18	96	#

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	20	29/01/2021	29/01/2021		[NT]	[NT]	
Date analysed	-			[NT]	20	31/01/2021	31/01/2021		[NT]	[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	20	5	7	33	[NT]	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	20	<0.4	<0.4	0	[NT]	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	20	11	16	37	[NT]	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	20	10	8	22	[NT]	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	20	76	31	84	[NT]	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	20	<0.1	<0.1	0	[NT]	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	20	3	3	0	[NT]	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	20	19	21	10	[NT]	[NT]	

QUALITY	CONTROL:	: Misc Soi	I - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	260173-4
Date prepared	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	103	95
QUALITY	CONTROL	Misc Soi	l - Inorg			Du	plicate		Spike Re	covery %
QUALITY Test Description	CONTROL: Units	Misc Soi	I - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]
QUALITY Test Description Date prepared	CONTROL: Units	Misc Soi PQL	I - Inorg Method	Blank [NT]	# 11	Du Base 28/01/2021	plicate Dup. 28/01/2021	RPD	Spike Re [NT] [NT]	covery % [NT] [NT]
QUALITY Test Description Date prepared Date analysed	CONTROL: Units -	Misc Soi	I - Inorg Method	Blank [NT] [NT]	# 11 11	Du Base 28/01/2021 28/01/2021	plicate Dup. 28/01/2021 28/01/2021	RPD	Spike Re [NT] [NT] [NT]	COVERY % [NT] [NT] [NT]

QUALITY	CONTROL:	Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			29/01/2021	[NT]		[NT]	[NT]	29/01/2021	[NT]
Date analysed	-			29/01/2021	[NT]		[NT]	[NT]	29/01/2021	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU.	ALITY CONT	ROL: CE	EC			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	260173-8
Date prepared	-			01/02/2021	2	01/02/2021	01/02/2021		01/02/2021	01/02/2021
Date analysed	-			01/02/2021	2	01/02/2021	01/02/2021		01/02/2021	01/02/2021
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	2	6.7	5.8	14	111	96
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	2	0.3	0.3	0	122	97
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	2	4.7	4.6	2	112	98
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	2	0.98	0.98	0	126	105

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container. Note: Sample 260173-3 was sub-sampled from a jar provided by the client.

Asbestos: Excessive sample volumes were provided for asbestos analysis. A portion of the supplied samples were sub-sampled according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples 260173-1-2,4-22 were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 260173-20 for Pb. Therefore a triplicate result has been issued as laboratory sample number 260173-30.

- # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project N	lo:	99856	6.00			Suburb):	Meadow	vbank		То:	Env	irolabs Services P	ty Ltd
Project N	lame:	Mead	owbank Pul	olic Schoo		Order I	Number					12 /	Ashley Street, Cha	tswood
Project N	lanager:	LT				Sample	er:	TM			Attn:	Aile	en <u>Hie</u>	
Emails:		lisa.te	eng; nicola	.warton@	douglaspar	<u>tners.co</u>	<u>m.au</u>				Phone:			
Date Req	uired:	24 ho	urs 🗆 72 h	nours 🗆 🗄	Standard 🗸	•	_				Email:	<u>Ahi</u>	e@envirolab.com	<u>1.au</u>
Prior Sto	rage: Es	ky 🗆 Fridg	je 🗸	Shelved	0	Do samp	oles contai	n 'potential	' HBM?	Yes 🛛	No 🗆	(If YES, the	n handle, transport and	store in accordance with FPM HAZID)
			pled	Sample Type	Container Type					Analytes	S 1		, <u>i</u>	4
Sample ID	Depth	Lab ID	Date Sam	S - soil M - material	G - glass P - plastic	Combo 8a	Combo 3a	Metis PAHs	DH CEC	втех	Forward to ALS	Hold		Notes/preservation
BH1	0.4-0.5)	21/01/21	Soil	G+P	x								
BH1	1.0-1.1	2	21/01/21	Soil	G+P		x		x					
BH2	0.4-0.5	3	21/01/21	Soil	G+P		x							
BH3	1.0-1.1	Ч	21/01/21	Soil	G+P	X								
BH3	2.0-2.1	Ś	21/01/21	Soil	G+P		X							
BH4	0.1-0.2	à	20/01/21	Soil	G+P	x								
BH5	. 0.4-0.5	7	20/01/21	Soil	G+P	X							Enviliente	Envirolab Services 12 Ashley St
BH5	1.4-1.5	۲	20/01/21	Soil	G+P		X		x					Chatswood NSW 2067
BH6	0.4-0.5	g	21/01/21	Soil	G+P	x							Job No:	260173,
BH6	1.0-1.1	10	21/01/21	Soil	G+P		x						Date Rece	eived: 22/01/2)
BH7	0.1-0.2	l 1	21/01/21	Soil	G+P	х						·	Time Rec	eved: 1617.00
BH7	1.0-1.1	-12	21/01/21	Soil	G+P		X					"	Temp: Co	ACCERT
BH8	0-0.1	13	20/01/21	Soil	G+P	x							Cooling: It	rtact/Broken/None
BH9	0.4-0.5	17	21/01/21	Soil	G+P	Х								
BH9	1.4-1.5	15	21/01/21	Soil	G+P	·.	Х							
PQL (S)	mg/kg					*							ANZECC PQLs	req'd for all water analytes 🛛
PQL = pr	actical qu	antitation li	nit. If non	e given, de	efault to Labo	oratory M	ethod Det	ection Lin	nit		lah R	enort/Re	ference No [.]	
Metals to	Analyse:	8HM unless	s specified	here:					_					
Total nu	mber of sa	imples in co	ntainer:	30	Reli	nquished	1 by:		Transpo	orted to la	aporatory	by:		
Send Re	sults to:	D	ouglas Parl	iners Pty L		ress 96-9	ed Hermit	age Ka, V	Vest Ryd	e	<u> </u>	Date & '	Time: 22/2	1/7 /
	<u></u>				<u>Neceiveu r</u>	<u>, y.</u>	5	V.	The second		I.			

.

.

.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project N	0:	99856	5.00	. `		Suburb	:	Meadov	vbank		To:	Env	irolabs S	ervices Pt	y Ltd
Project N	ame:	Mead	owbank Put	olic Schoo		Order N	lumber					12 /	Ashley St	reet, Chat	swood
Project M	anager:	LT				Sample	er:	TM			Attn:	Aile	en Hie		
Emails:		lisa.te	eng; nicola.	warton@	douglaspar	ners.cor	n.au				Phone:				
Date Req	uired:	24 ho	urs 🛛 72 h	nours 🛛	Standard 🗸	•					Email:	<u>Ahi</u>	e@envir	olab.com	.au
Prior Sto	rage: Es	sky 🗆 Fridg	ge 🗸	Shelved		Do samp	oles contair	i 'potential'	HBM?	Yes 🛛	No 🗆	(If YES, the	n handle, tr	ansport and	store in accordance with FPM HAZID)
			pled	Sample Type	Container Type					Analytes					
Sample ID	Depth	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3a	Metls PAHs	CEC Hq	BTEX	Forward to ALS	On Hold			Notes/preservation
BH10	0.1-0.2	16	21/01/21	Soil	G+P		X	<u>.</u>						· · ·	
BH11	0-0.1	17	20/01/21	Soil_	G+P	Х									
BH11	0.9-1.0	13	20/01/21	Soil	Ġ+P	X								-	· · · · · · · · · · · · · · · · · · ·
BH11	1.9-2.0	: 19	20/01/21	Soil	G+P		X								
BH12	⇒ 0 - 0.1	<u> </u>	20/01/21	Soil	G+P	Х				·					
BH12	0.4-0.5	2)	20/01/21	Soil	G+P	Х	_				ļ				· · ·
BH12	1.4-1.5	22	20/01/21	Soil	G+P		X		X					<u> </u>	
BD5/20	200121	23_	21/01/21	Soil	G			<u>,</u> x						<u> </u>	
BD3/20	200121	ALS	21/01/21	Soil	G						X				please forward to ALS
TS1		24	21/01/21	Soil	G					X				1	trip spike
TB1		25	21/01/21	Soil	G					X	· · · · · · · · · · · · · · · · · · ·				trip blank
BH3	0.4-0.5	26	21/01/21	Soil	G+P							X			
BH6	0-0.1	27	21/01/21	Soil	G+P	·						x			
BH9	0-0.1	_28	21/01/21	Soil	G+P				_			<u>x</u>		<u>.</u>	
BH11	0.4-0.5	29.	21/01/21	Soil	G+P	· · · · ·				ļ		X			
PQL (S) n	ng/kg		т.,											CC PQLs	req'd for all water analytes
PQL = pr	actical qu	quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No:													
Metals to	Analyse:	yse: 8HM unless specified here:													
Send Res	ults to:	Douglas Partners Ptv I td Address 96-98 Hermitage Rd. West Rvde Phone: 9809 0666 Fax:							666 Fax:						
Signed	JH				Received b	v:	1.0))				Date &	Time:		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							Kg.								

· ۲۰۰۰

2.5

۰.۰

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Lisa Teng, Nicola Warton

Sample Login Details	
Your reference	99856.00, Meadowbank Public School
Envirolab Reference	260173
Date Sample Received	22/01/2021
Date Instructions Received	22/01/2021
Date Results Expected to be Reported	01/02/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	29 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	18
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
#10 jar labelled as BH8/1.0-1.1.	٦
#23 labelled as BD5/20210120.	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:
Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC	On Hold
BH1-0.4-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓			
BH1-1.0-1.1	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	
BH2-0.4-0.5	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			
BH3-1.0-1.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH3-2.0-2.1	✓	\checkmark	\checkmark				\checkmark		\checkmark			
BH4-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark			
BH5-0.4-0.5	 ✓ 	\checkmark	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark			
BH5-1.4-1.5	✓	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	
BH6-0.4-0.5	✓	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark			
BH6-1.0-1.1	 ✓ 	\checkmark	\checkmark				\checkmark		\checkmark			
BH7-0.1-0.2	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark			
BH7-1.0-1.1	 ✓ 	\checkmark	\checkmark				✓		\checkmark			
BH8-0-0.1	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark			
BH9-0.4-0.5	✓	\checkmark	\checkmark	✓	✓	\checkmark	✓	✓	\checkmark			
BH9-1.4-1.5	✓	✓	\checkmark				✓		\checkmark			
BH10-0.1-0.2	\checkmark	✓	✓				\checkmark		\checkmark			
BH11-0-0.1	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark			
BH11-0.9-1.0	✓	✓	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark			
BH11-1.9-2.0	\checkmark	✓	✓				\checkmark		\checkmark			
BH12-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark			
BH12-0.4-0.5	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark			
BH12-1.4-1.5	✓	\checkmark	\checkmark				✓		\checkmark	\checkmark	\checkmark	
BD5/20200121			\checkmark				✓					
TS1	✓											
TB1	\checkmark											
BH3-0.4-0.5												\checkmark
BH6-0-0.1												\checkmark
BH9-0-0.1												\checkmark
BH11-0.4-0.5												\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2102474	Page	: 1 of 6					
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	Environmental Division Sydney					
Contact	: LISA TENG	Contact	: Sepan Mahamad					
Address	: 96 HERMITAGE ROAD	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164					
	WEST RYDE NSW, AUSTRALIA 2114							
Telephone		Telephone	: +61 2 8784 8555					
Project	: 9856.00 Meadowbank Public School	Date Samples Received	: 25-Jan-2021 15:30					
Order number	:	Date Analysis Commenced	: 27-Jan-2021					
C-O-C number	:	Issue Date	: 01-Feb-2021 10:27					
Sampler	: TM		HALA NALA					
Site	: Meadowbank							
Quote number	: EN/222		Approximation No. 925					
No. of samples received	: 1		Accredited for compliance with					
No. of samples analysed	:1		ISO/IEC 17025 - Testing					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID		BD3/20210121	 	 	
		Samplii	ng date / time	21-Jan-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2102474-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 10)5-110°C)					
Moisture Content		1.0	%	19.9	 	
EG005(ED093)T: Total Metals by ICP-	AES					
Arsenic	7440-38-2	5	mg/kg	9	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	16	 	
Copper	7440-50-8	5	mg/kg	15	 	
Lead	7439-92-1	5	mg/kg	27	 	
Nickel	7440-02-0	2	mg/kg	8	 	
Zinc	7440-66-6	5	mg/kg	22	 	
EG035T: Total Recoverable Mercury	by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydroca	rbons					
C6 - C9 Fraction		10	mg/kg	<10	 	

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD3/20210121					
		Sampli	ng date / time	21-Jan-2021 00:00					
Compound	CAS Number	LOR	Unit	ES2102474-001					
				Result					
EP080/071: Total Petroleum Hydrocarbons - Continued									
C10 - C14 Fraction		50	mg/kg	<50					
C15 - C28 Fraction		100	mg/kg	<100					
C29 - C36 Fraction		100	mg/kg	<100					
^ C10 - C36 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	าร						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10					
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10					
(F1)									
>C10 - C16 Fraction		50	mg/kg	<50					
>C16 - C34 Fraction		100	mg/kg	<100					
>C34 - C40 Fraction		100	mg/kg	<100					
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50					
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50					
(F2)									
EP080: BTEXN									
Benzene	71-43-2	0.2	mg/kg	<0.2					
Toluene	108-88-3	0.5	mg/kg	<0.5					
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5					
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5					
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5					
^ Sum of BTEX		0.2	mg/kg	<0.2					
^ Total Xylenes		0.5	mg/kg	<0.5					
Naphthalene	91-20-3	1	mg/kg	<1					
EP075(SIM)S: Phenolic Compound Su	rrogates								
Phenol-d6	13127-88-3	0.5	%	92.1					
2-Chlorophenol-D4	93951-73-6	0.5	%	97.6					
2.4.6-Tribromophenol	118-79-6	0.5	%	68.8					
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.5	%	104					
Anthracene-d10	1719-06-8	0.5	%	107					
4-Terphenyl-d14	1718-51-0	0.5	%	103					
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	0.2	%	90.2					
Toluene-D8	2037-26-5	0.2	%	102					

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD3/20210121	 	
		Samplir	ng date / time	21-Jan-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2102474-001	 	
				Result	 	
EP080S: TPH(V)/BTEX Surrogates - Contin	ued					
4-Bromofluorobenzene	460-00-4	0.2	%	96.2	 	

Surrogate Control Limits

Sub Motrive COU	Bacquery Limita (%)					
Sub-Matrix: SOIL		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP075(SIM)S: Phenolic Compound Surrogate	s					
Phenol-d6	13127-88-3	63	123			
2-Chlorophenol-D4	93951-73-6	66	122			
2.4.6-Tribromophenol	118-79-6	40	138			
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	70	122			
Anthracene-d10	1719-06-8	66	128			
4-Terphenyl-d14	1718-51-0	65	129			
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	73	133			
Toluene-D8	2037-26-5	74	132			
4-Bromofluorobenzene	460-00-4	72	130			

QUALITY CONTROL REPORT

Work Order	: ES2102474	Page	: 1 of 7
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: LISA TENG	Contact	: Sepan Mahamad
Address	: 96 HERMITAGE ROAD	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	WEST RYDE NSW, AUSTRALIA 2114		
Telephone	:	Telephone	: +61 2 8784 8555
Project	: 9856.00 Meadowbank Public School	Date Samples Received	: 25-Jan-2021
Order number	:	Date Analysis Commenced	: 27-Jan-2021
C-O-C number	:	Issue Date	: 01-Feb-2021
Sampler	: TM		HOC-MRA NATA
Site	: Meadowbank		
Quote number	: EN/222		Accreditation No. 925
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

		Laboratory Duplicate (DUP) Report						
Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
al Metals by ICP-AES (QC L	ot: 3483018)							
BD3/20210121	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
	EG005T: Chromium	7440-47-3	2	mg/kg	16	14	8.43	No Limit
	EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.00	No Limit
	EG005T: Arsenic	7440-38-2	5	mg/kg	9	8	16.3	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	15	14	8.35	No Limit
	EG005T: Lead	7439-92-1	5	mg/kg	27	25	8.56	No Limit
	EG005T: Zinc	7440-66-6	5	mg/kg	22	21	7.52	No Limit
Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
	EG005T: Chromium	7440-47-3	2	mg/kg	12	12	0.00	No Limit
	EG005T: Nickel	7440-02-0	2	mg/kg	5	5	0.00	No Limit
	EG005T: Arsenic	7440-38-2	5	mg/kg	10	11	13.5	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	24	22	7.00	No Limit
	EG005T: Lead	7439-92-1	5	mg/kg	38	34	12.8	No Limit
	EG005T: Zinc	7440-66-6	5	mg/kg	74	70	5.44	0% - 50%
ntent (Dried @ 105-110°C) (0	QC Lot: 3483023)							
Anonymous	EA055: Moisture Content		0.1	%	28.9	28.7	0.550	0% - 20%
Anonymous	EA055: Moisture Content		0.1	%	3.2	3.4	6.46	No Limit
verable Mercury by FIMS (C	IC Lot: 3483019)							
BD3/20210121	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.00	No Limit
clear Aromatic Hydrocarbo	ns (QC Lot: 3479131)							
Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	Sample ID al Metals by ICP-AES (QC L) BD3/20210121 Anonymous Anonymous Anonymous verable Mercury by FIMS (Q BD3/20210121 Anonymous verable Mercury by FIMS (Q BD3/20210121 Anonymous verable Mercury by FIMS (Q BD3/20210121 Anonymous verable Aromatic Hydrocarbo Anonymous	Sample ID Method: Compound al Metals by ICP-AES (QC Lot: 3483018) EG005T: Cadmium BD3/20210121 EG005T: Cadmium EG005T: Chromium EG005T: Chromium EG005T: Nickel EG005T: Copper EG005T: Lead EG005T: Cadmium EG005T: Copper EG005T: Cadmium EG005T: Copper EG005T: Cadmium EG005T: Cadmium EG005T: Cadmium EG005T: Cadmium EG005T: Chromium EG005T: Chromium EG005T: Chromium EG005T: Copper EG005T: Copper EG005T: Lead EG005T: Copper EG005T: Lead EG005T: Copper EG005T: Lead EG005T: Copper EG005T: Moisture Content Anonymous EA055: Moisture Content Anonymous EA055: Moisture Content PO75(SIM): Machtalene BD3/20210121 EG035T: Mercury Anonymous EG035T: Mercury Iclear Aromatic Hydrocarbons (QC Lot: 3479131)	Sample ID Method: Compound CAS Number al Metals by ICP-AES (QC Lot: 3483018) CAS Number BD3/20210121 EG005T: Cadmium 7440-43-9 EG005T: Chromium 7440-47-3 EG005T: Nickel 7440-02-0 EG005T: Arsenic 7440-38-2 EG005T: Copper 7440-50-8 EG005T: Copper 7440-66-6 Anonymous EG005T: Cadmium 7440-43-9 EG005T: Copper 7440-66-6 EG005T: Chromium 7440-47-3 EG005T: Copper 7440-66-6 EG005T: Copper 7440-60-8 EG005T: Nickel 7440-02-0 EG005T: Nickel 7440-02-0 EG005T: Copper 7440-68-8 EG005T: Copper 7440-50-8 EG005T: Copper 7440-50-8 EG005T: Copper 7440-66-6 Intent (Dried @ 105-110°C) (QC Lot: 3483023) Anonymous Anonymous EA055: Moisture Content Anonymous EA055: Moisture Content Verable Mercury by FIMS (QC Lot: 3483019) ED3/20210121 EG035	Sample ID Method: Compound CAS Number LOR al Metals by ICP-AES (QC Lot: 3483018) EG005T: Cadmium 7440-43-9 1 BD3/20210121 EG005T: Cadmium 7440-47-3 2 EG005T: Chronium 7440-02-0 2 EG005T: Chronium 7440-38-2 5 EG005T: Copper 7440-38-2 5 EG005T: Copper 7440-68-6 5 EG005T: Cadmium 7440-43-9 1 EG005T: Cadmium 7440-43-8 5 EG005T: Cadmium 7440-43-9 1 EG005T: Cadmium 7440-43-9 2 EG005T: Cadmium 7440-43-2 2 EG005T: Cadmium 7440-43-8 5 EG005T: Cadmium 7440-43-8 </td <td>Sample ID Method: Compound CAS Number LOR Unit all Metals by ICP-AES (QC Lot: 3483018) EG005T: Cadmium 7440-43-9 1 mg/kg EG005T: Chromium 7440-47-3 2 mg/kg EG005T: Nickel 7440-02-0 2 mg/kg EG005T: Nickel 7440-02-0 2 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-68-6 5 mg/kg EG005T: Lead 7440-43-9 1 mg/kg EG005T: Lead 7440-68-6 5 mg/kg EG005T: Copper 7440-43-9 1 mg/kg EG005T: Cadmium 7440-43-9 1 mg/kg EG005T: Copper 7440-43-9 1 mg/kg EG005T: Copper 7440-68-6 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Lead 7439-92-1 5 mg/kg EG005T: Lead mg/kg</td> <td>Sample Method: Compound (Method: Compound BD3/20210121 Method: Compound (EG005T: Cadmium CAS Number (Ad0-43-9) LOR Unit Original Result BD3/20210121 EG005T: Cadmium 7440-43-9 1 mg/kg <1</td> EG005T: Chromium 7440-47-3 2 mg/kg 8 EG005T: Nickel 7440-60-8 5 mg/kg 9 EG005T: Copper 7440-50-8 5 mg/kg 15 EG005T: Cadmium 7440-60-8 5 mg/kg 22 EG005T: Cadmium 7440-43-9 1 mg/kg 21 EG005T: Cadmium 7440-43-9 1 mg/kg 22 EG005T: Cadmium 7440-43-9 1 mg/kg 21 EG005T: Cadmium 7440-43-9 1 mg/kg 12 EG005T: Cadmium 7440-43-9 1 mg/kg 12 EG005T: Nickel 7440-02-0 2 mg/kg 30 EG005T: Inckel 7440-02-0 2 mg/kg 38 EG005T: Inckel	Sample ID Method: Compound CAS Number LOR Unit all Metals by ICP-AES (QC Lot: 3483018) EG005T: Cadmium 7440-43-9 1 mg/kg EG005T: Chromium 7440-47-3 2 mg/kg EG005T: Nickel 7440-02-0 2 mg/kg EG005T: Nickel 7440-02-0 2 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-68-6 5 mg/kg EG005T: Lead 7440-43-9 1 mg/kg EG005T: Lead 7440-68-6 5 mg/kg EG005T: Copper 7440-43-9 1 mg/kg EG005T: Cadmium 7440-43-9 1 mg/kg EG005T: Copper 7440-43-9 1 mg/kg EG005T: Copper 7440-68-6 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Copper 7440-38-2 5 mg/kg EG005T: Lead 7439-92-1 5 mg/kg EG005T: Lead mg/kg	Sample Method: Compound (Method: Compound BD3/20210121 Method: Compound (EG005T: Cadmium CAS Number (Ad0-43-9) LOR Unit Original Result BD3/20210121 EG005T: Cadmium 7440-43-9 1 mg/kg <1	Sample D Method: Compound CAS Number LOR Unit Original Result Duplicate (DUP) Report BD3/20210121 EG005T: Cadmium 740-43-9 1 mg/kg <1	Caboratory Unificate (UVP) Report Sample ID Method: Compound CAS Number LOR Unit Original Result RPD (K) BD3/20210121 EG005T: Cardmium 740439 1 mg/kg <1

Page	: 3 of 7
Work Order	: ES2102474
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 9856.00 Meadowbank Public School

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydroca	rbons (QC Lot: 3479131) - continued							
ES2102414-001	Anonymous	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC Lot: 3479130)							
ES2102414-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Pet	roleum Hydrocarbons(QC Lot: 3480479)							
ES2102414-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES2102499-004	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 Fractions (QC Lot: 3479130)							
ES2102414-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 Fractions (QC Lot: 3480479)							
ES2102414-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES2102499-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	Lot: 3480479)								
ES2102414-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page	: 4 of 7
Work Order	: ES2102474
Client	: DOUGLAS PARTNERS PTY LTD
Project	9856.00 Meadowbank Public School

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC Lot: 3480479) - continued									
ES2102499-004	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
EP080: ortho-Xylene		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3483018)										
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	108	88.0	113		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	105	70.0	130		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	112	68.0	132		
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	109	89.0	111		
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.1 mg/kg	105	82.0	119		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	102	80.0	120		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	85.4	66.0	133		
EG035T: Total Recoverable Mercury by FIMS (QCLot:	3483019)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.073 mg/kg	103	70.0	130		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 3479131)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	115	77.0	125		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	111	72.0	124		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	112	73.0	127		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	112	72.0	126		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	116	75.0	127		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	115	77.0	127		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	122	73.0	127		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	119	74.0	128		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	113	69.0	123		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	117	75.0	127		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	107	68.0	116		
	205-82-3	0.5	mallea	<0 E	6 malka	120	74.0	100		
EP075(SIM): Benzo(k)fluoranthene	207-06-9	0.5	mg/kg	<0.5	6 mg/kg	120	74.0	120		
EP075(SIM): Benzo(a)pyrene	103 30 5	0.5	mg/kg	<0.5	6 mg/kg	123	61.0	120		
EP075(SIM): Indeno(1.2.3.ca)pyrene	53 70 3	0.5	mg/kg	<0.5	6 mg/kg	106	62.0	110		
EP075(SIM): Dibenz(a.n)anthracene	101-24-2	0.5	mg/kg	<0.5	6 mg/kg	100	63.0	121		
	131-22	0.0	ilig/kg	\$0.0	0 mg/kg	101	03.0	121		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 34	79130)	50	malka	<50	200 ma/ka	96.7	75.0	120		
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	80.7	75.0	129		
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	88.1	77.0	131		
EP0/1: C29 - C36 Fraction		100	тід/кд	<100	300 mg/kg	89.0	71.0	129		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 34	80479)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	105	68.4	128		
P080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3479130)										

Page	: 6 of 7
Work Order	: ES2102474
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 9856.00 Meadowbank Public School

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Recoverable Hydrocarbons - NEF	M 2013 Fractions (QCL	Lot: 3479130) - co	ntinued						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	90.7	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	90.1	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	91.0	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3480479)									
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	106	68.4	128	
EP080: BTEXN (QCLot: 3480479)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	101	62.0	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	100	67.0	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	100	65.0	117	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	101	66.0	118	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	102	68.0	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	94.9	63.0	119	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Ма	trix Spike (MS) Report	t			
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: To	tal Metals by ICP-AES (QCLot: 3483018)						
ES2102474-001	BD3/20210121	EG005T: Arsenic	7440-38-2	50 mg/kg	96.2	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	93.6	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	95.8	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	96.7	70.0	130
		EG005T: Lead 7439-92-		250 mg/kg	98.8	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	93.6	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	100	66.0	133
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 3483019)						
ES2102474-001	BD3/20210121	EG035T: Mercury	7439-97-6	5 mg/kg	75.8	70.0	130
EP075(SIM)B: Polyı	nuclear Aromatic Hydrocarbons (QCLot: 3479131)						
ES2102414-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	98.0	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	97.1	70.0	130
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3479130)						
ES2102414-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	79.4	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	71.7	53.0	131

Page	: 7 of 7
Work Order	: ES2102474
Client	: DOUGLAS PARTNERS PTY LTD
Project	 9856.00 Meadowbank Public School

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Lir	nits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3479130) - continued						
ES2102414-001	Anonymous	EP071: C29 - C36 Fraction		1714 mg/kg	79.0	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3480479)						
ES2102414-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	110	70.0	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3479130)							
ES2102414-001 Anonymous		EP071: >C10 - C16 Fraction		860 mg/kg	75.4	73.0	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	80.1	53.0	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	84.3	52.0	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 3480479)					
ES2102414-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	107	70.0	130
EP080: BTEXN (Q	CLot: 3480479)						
ES2102414-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	102	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	100	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	104	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	102	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	103	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	89.4	70.0	130

QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: ES2102474	Page	: 1 of 4				
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney				
Contact	: LISA TENG	Telephone	: +61 2 8784 8555				
Project	: 9856.00 Meadowbank Public School	Date Samples Received	: 25-Jan-2021				
Site	: Meadowbank	Issue Date	: 01-Feb-2021				
Sampler	: TM	No. of samples received	: 1				
Order number	:	No. of samples analysed	: 1				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BD3/20210121	21-Jan-2021				28-Jan-2021	04-Feb-2021	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BD3/20210121	21-Jan-2021	28-Jan-2021	20-Jul-2021	1	29-Jan-2021	20-Jul-2021	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BD3/20210121	21-Jan-2021	28-Jan-2021	18-Feb-2021	1	29-Jan-2021	18-Feb-2021	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BD3/20210121	21-Jan-2021	28-Jan-2021	04-Feb-2021	~	29-Jan-2021	09-Mar-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BD3/20210121	21-Jan-2021	27-Jan-2021	04-Feb-2021	1	28-Jan-2021	04-Feb-2021	✓
Soil Glass Jar - Unpreserved (EP071) BD3/20210121	21-Jan-2021	28-Jan-2021	04-Feb-2021	1	29-Jan-2021	09-Mar-2021	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BD3/20210121	21-Jan-2021	27-Jan-2021	04-Feb-2021	1	28-Jan-2021	04-Feb-2021	1
Soil Glass Jar - Unpreserved (EP071) BD3/20210121	21-Jan-2021	28-Jan-2021	04-Feb-2021	~	29-Jan-2021	09-Mar-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BD3/20210121	21-Jan-2021	27-Jan-2021	04-Feb-2021	1	28-Jan-2021	04-Feb-2021	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: 😕 = Quality Control frequency not within specification ; 🗹 = Quality Control frequency within specificati							
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Moisture Content	EA055	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

•...

0

CHAIN OF CUSTODY DESPATCH SHEET

Project N	Project No: 99856.00							Meado	wbank		То:	Env	irolabs Se	To: Envirolabs Services Pty Ltd					
Project N	lame:	Mead	owbank Pu	blic Schoo	L	Order	Number				12 Ashley Street, Chatswood								
Project N	lanager:	LT				Sampl	er:	ТМ			Attn:	Aile	en Hie						
Emails:		<u>lisa.te</u>	eng; nicola	.warton@	douglaspar	tners.co				Phone:									
Date Req	uired:	24 ho	urs 🛛 72	hours 🛛	Standard 🗸	•					Email: Ahie@envirolab.com.au								
Prior Sto	rage: E	sky 🛛 Frid	ge 🗸	Shelved		Do samples contain 'potential' HBM? Yes						f YES, the	ore in accordance with F	PM HAZID)					
			eq	Sample	Container Type					Analytes	;								
Sample ID	Depth	Lab ID	Date Sampl	S - soil M - material	G - glass P - plastic	Metals	Metals TRH BTEX PAH								Notes/preser	vation			
BD3/20	210121		21/01/21	s	Р	х	X	X	X										
				-	-		1	1						<u> </u>					
								1											
				· ··· <u>-</u> -			<u>-</u>												
																.			
															<u></u>				
													Environ	Mental Division	<u>. </u>				
A OLIMAN	Bolinguishord he IAN Diartopia							1					Sydney	mental Division	-				
Franger	11 SNIA NI		hallow			}								Work	Order Reference	·			
	ļ	<u> </u>	<u>nmenz</u>	<u> </u>			<u> </u>		-		<u></u>			ES	2102474				
	<u> </u>	ļ	25/12/	830					ļ				ļ		_	·			
				UM I		1	ļ												
				· · · ·			<u> </u>	1								1			
<u> </u>					•		+	<u> </u>					1						
			<u> </u>	<u></u>		ļ	<u> </u>			+	╉───┤					i			
				ļ_,		<u> </u>	_	_	-		├ ───┤		 	Telephone · + (61-2-8784 8555				
PQL (S)	na/ka		1				1	1			† †		ANZEC	C PQLs re	q'd for all water ar	nalytes 🗉			
PQL = pr	actical ou	antitation li	mit. If non	e given, de	fault to Labo	bratory M	ethod De	tection Li	mit					1					
Metals to	Analyse	8HM unles	s specified	here:							Lab Re	port/Ke	Terence N	10:					
Total nur	nber of sa	amples in co	ontainer:	1	Reli	nquishe	d by:	JH	Transp	orted to la	aboratory	by:			Courier				
Send Res	sults to:	C	ouglas Par	tners Pty L	td Add	ress 96-	98 Hermit	tage Rd, \	West Ryd	le			Phone	9809 066	6 Fax:				
Signed:	JH				Received b	by:						Date &	Time:						
										Rec	550	Spe	- 2	5/12	.1 (530	1430			
											\mathcal{O}	O^{μ}		2601	73				

Appendix H

Results of Statistical Analysis

and Chromatograms

Lisa Teng

From:	Joshua Williams <jwilliams@envirolab.com.au></jwilliams@envirolab.com.au>
Sent:	Monday, 8 February 2021 3:14 PM
То:	Lisa Teng
Cc:	Kyle Gavrily; Nick Sarlamis; Nicola Warton
Subject:	RE: Results for Registration 260173 99856.00, Meadowbank Public School

In sample 16 the positive profile at the back end of the chromatogram is due to asphalt Sample 3 is a bit harder to discern and it isn't a great match for anything within our reference library, the sample doesn't look like a light petroleum fuel more like an oil but that's about as specific as I can get.

Hope this was of some help,

Kind Regards,

Joshua Williams | Senior Chemist | Envirolab Services

Great Science. Great Service.

E JWilliams@envirolab.com.au | W www.envirolab.com.au

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Lisa Teng <Lisa.Teng@douglaspartners.com.au>

Sent: Monday, 8 February 2021 2:38 PM

To: Joshua Williams < JWilliams@envirolab.com.au>

Cc: Kyle Gavrily <KGavrily@envirolab.com.au>; Nick Sarlamis <NSarlamis@envirolab.com.au>; Nicola Warton

<Nicola.Warton@douglaspartners.com.au>

Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thanks Josh,

Do you guys have any ideas what it might be?

Lisa Teng | Environmental Engineer

Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0437 976 196 | E: Lisa.Teng@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Joshua Williams < JWilliams@envirolab.com.au> Sent: Monday, 8 February 2021 1:50 PM To: Lisa Teng <Lisa.Teng@douglaspartners.com.au> Cc: Kyle Gavrily <KGavrily@envirolab.com.au>; Nick Sarlamis <NSarlamis@envirolab.com.au>; Nicola Warton <Nicola.Warton@douglaspartners.com.au> Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

No problem,

Please find both the PDF's attached,

If there's any other way I can be of assistance don't hesitate to let me know.

Kind Regards,

Joshua Williams | Senior Chemist | Envirolab Services

Great Science. Great Service.

E JWilliams@envirolab.com.au | W www.envirolab.com.au

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Lisa Teng <Lisa.Teng@douglaspartners.com.au>

Sent: Monday, 8 February 2021 1:45 PM

To: Joshua Williams <<u>JWilliams@envirolab.com.au</u>>

Cc: Kyle Gavrily <KGavrily@envirolab.com.au>; Nick Sarlamis <NSarlamis@envirolab.com.au>; Nicola Warton <Nicola.Warton@douglaspartners.com.au>

Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Apologies BH10/0.1-0.2

Lisa Teng | Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0437 976 196 | E: Lisa.Teng@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Joshua Williams < JWilliams@envirolab.com.au> Sent: Monday, 8 February 2021 1:44 PM

To: Lisa Teng <<u>Lisa.Teng@douglaspartners.com.au</u>>
 Cc: Kyle Gavrily <<u>KGavrily@envirolab.com.au</u>>; Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>; Nicola Warton
 <<u>Nicola.Warton@douglaspartners.com.au</u>>
 Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

Hi Lisa,

Just about to send through those chromatograms can't seem to find sample BH10 / 0.4-0.5, could you please clarify which sample this corresponds to? Thanks.

Kind Regards,

Joshua Williams | Senior Chemist | Envirolab Services

Great Science. Great Service.

E <u>JWilliams@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>

Sent: Monday, 8 February 2021 1:22 PM

To: Lisa Teng <<u>Lisa.Teng@douglaspartners.com.au</u>>; Nicola Warton <<u>Nicola.Warton@douglaspartners.com.au</u>>; Cc: Joshua Williams <<u>JWilliams@envirolab.com.au</u>>; Kyle Gavrily <<u>KGavrily@envirolab.com.au</u>>; Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

That should not be a problem

Kind Regards,

Nick Sarlamis | Inorganics Supervisor | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>NSarlamis@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Lisa Teng <<u>Lisa.Teng@douglaspartners.com.au</u>>

Sent: Monday, 8 February 2021 12:23 PM

To: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>; Nicola Warton <<u>Nicola.Warton@douglaspartners.com.au</u>> Subject: RE: Results for Registration 260173 99856.00, Meadowbank Public School

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Nick,

Are we able to get the chromatographs

- BH10 / 0.4-0.5

Lisa Teng | Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0437 976 196 | E: Lisa.Teng@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>

Sent: Monday, 1 February 2021 6:13 PM

To: Lisa Teng <<u>Lisa.Teng@douglaspartners.com.au</u>>; Nicola Warton <<u>Nicola.Warton@douglaspartners.com.au</u>>; Subject: Results for Registration 260173 99856.00, Meadowbank Public School

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: <u>customerservice@envirolab.com.au</u>

How did we do? Send Feedback

Kind Regards,

Nick Sarlamis | Inorganics Supervisor | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>NSarlamis@envirolab.com.au</u> | W www.envirolab.com.au

Follow us on: LinkedIn | Facebook | Twitter

Please consider the environment before printing this email.

Samples will be analysed per our T&C's.

The content of this email and any attachments are intended solely for the addressee(s), may contain confidential and/or privileged information and may be legally protected from disclosure. Any unauthorised use is expressly prohibited. If you have received this email in error please promptly notify the sender, disregard and then delete the email. Any views expressed in this communication are those of the individual sender. This email may have been corrupted or interfered with. Envirolab Group Pty Ltd cannot guarantee that the message you receive is the same as the message sent. Envirolab Group does not represent, warrant or guarantee that the communication is free from errors, virus or interference. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedent. Envirolab Group accepts no liability for any damage caused by this email or its attachments due to viruses, interference, interception, corruption or unauthorised access. Envirolab Group's entire liability is limited to resending this email.

This e-mail message has been scanned for Viruses

Data File C:\DATA\2021\01_21\250121\F0000270.D Sample Name: s260173-3

	·		
Acq. Operator	:	S	eq. Line : 270
Acq. Instrument	:	GC#4	Location : Vial 45
Injection Date	:	30/01/2021 12:57:11 AM	Inj: 1
		I nj	j Volume : 1 μl
Acq. Method	:	C:\CHEM32\1\METHODS\NEPM JF.M	
Last changed	:	16/01/2020 11:55:46 AM	
Analysis Method	:	C: \METHODS\2021\01_21\250121-F-P	ROCESSING TAB.M
Last changed	:	01/02/2021 11:31:25 AM	
		(modified after loading)	
Method Info	:	FAST TPH WITH 15M HP5 COLUMNS	

5.651 VV I	65.71650	1.44948e-1	9. 52544	o-terphenyl
6.201 VV	50. 29771	1.82903e-1	9. 19962	chl orooctodecane
6.468 VV I	5. 71911	1.58301e-1	9.05343e-1	p-terphenyl d14

Data File C:\DATA\2021\01_21\250121\F0000270.D Sample Name: s260173-3

RetTime Type [min] 	Area [pA*s] -	Amt/Area	Amount G [mg/L] -	irp Name -	
Totals :			19.63041		
	Su	mmed Peaks	Report		
================					
Signal 1: FID1	A, Front Sig	nal			
Name	Start Time	End Time	Total Area	Amount	
	[min]	[min]	[pA*s]	[mg/L]	
		4 150		4/ 25/5	-
	2.080	4. 150	285.28138	40.3000	
TDU C15 C20	2.000	4.010	304.47334 152 10026	02.4700	
	4.150	7.090	62 75102	24.3043 10 1//Q	
TPH C20_C36	7 800	9.020	51 707 <i>1</i> 5	8 2628	
NEDW $>C34-C40$	9 020	10 510	<i>15 1</i> 2303	0.2020 7.2461	
NET M 2004 040	7. 020	10.010	40. 42070	7.2401	
Totals :				158. 8496	
============		============	=============	=========	
	Final	Summed Pea	aks Report		
Signal 1: FID1	A, Front Sig	nal			
Name	Total Area	Amount			
	[pA*s]	[mg/L]			
	-				
TRH C10-C14	285. 28138	46.3565			
NEPM >C10-C16	384. 47554	62.4750			
TRH C15-C28	153. 10936	24.3643			
NEPM >C16-C34	63. 75192	10. 1448			
TRH C29-C36	51. 79745	8.2628			
NEPM >C34-C40	45.42393	7.2461			

65.71650 9.5254

5.71911

9.1996

0.9053

*** End of Report ***

178.4800

GC#4 01/02/2021 11:36:00 AM

o-terphenyl

Totals :

p-terphenyl d14

chlorooctodecan 50.29771

I UCL Statistics for Data Sets with Non-Detects 2 User Selected Options		А	В	С	D	E	F	G	Н	I	J	K	L			
2 User Selected Options 4 Data/Time of Computation 5 From Tile Order MorkSheet Als 6 Full Proceine 7 Confidence Cateficient 8 Number of Doctations Operations 10 May PTEQ 10 May PTEQ 11 Confidence Cateficient 12 Confidence Cateficient 13 Total Number of Destrots 5 14 Number of Destrot Deservations 15 Number of Destrot Deservations 16 Mainmum Non-Detect 16 Mainmum Non-Detect 17 Maximum Detect 18 Order Statistics 19 Mean Desets 14 Maximum Detect 15 Maximum Non-Detect 16 Maximum Non-Detect 17 Maximum Detect 18 Percent Non-Dectect 18 Percent Non-Dectect 19 Mean Desets 140 Steveness Detects 142 Steveness Detects <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>UCL Statis</th> <th>tics for Data</th> <th>Sets with N</th> <th>Ion-Detects</th> <th></th> <th></th> <th></th> <th></th>	1					UCL Statis	tics for Data	Sets with N	Ion-Detects							
3 User Sielected Options 9 DisaTime of Computations 6 From File 7 Confidence Confidence 8 Number of Exolations 9 Form File 10 General Statistics 10 General Statistics 11 Confidence Confidence 12 General Statistics 13 Total Number of Observations 14 Number of Destinct Desters 15 Number of Destinct Desters 16 Number of Destinct Desters 17 Maximum Non-Detect 0.5 18 Variance Desters 1.4 19 Maximum Non-Detect 0.5 10 Maximum Non-Detect 0.5 11 Maximum Non-Detect 0.5 12 Maximum Non-Detect 0.5 13 Variance Desters 1.45.5 14 Maximum Non-Detect 0.5 15 Maximum Non-Detect 0.5 16 Maximum Non-Detect 0.5 <t< th=""><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	2															
2 Date/Time of Computation ProVide 15: 8124/02/2013 14:23 PM 6 FUIP Procision OFF 7 Confidence Coefficient 95% 8 Number of Toolostinap Operations 2000 10 BipP TEO Enter of Toolostinap Operations 200 11 Confidence Coefficient 95% 12 Carenal Statistics 6 13 Total Number of Detects 6 Number of Distinct Deservations 6 14 Number of Detects 5 Number of Distinct Deservations 6 14 Number of Detects 5 Number of Distinct Deservations 6 15 Number of Distinct Deservations 14 Maximum Non-Detects 20 16 Marinum Non-Detects 5.1 Number of Distinct Deservations 14.5 16 Maximum Detects 1.45 OC Votations 14.5 17 Maximum Non-Detects 2.4 OV Detects 1.45 20 Maximum Non-Detects 0.56 Stoprotice Non-Detects 1.45	3		User Sele	cted Options	5											
S From File Work/Sheet.ds Implementation GPF Number of Ecoletance Coefficient 95% Number of Ecoletance Coefficient 95% Implementation 2000 Implementation 2000 Implementation 2000 Implementation 2000 Implementation 2000 Implementation 2000 Implementation Central Statistice 2000 Implementation Number of Obstanct Deservations 6 Mumber of Distainct Deservations 6 Implementation Number of Distainct Deservations 20 Maximum Desect 0.5 Mumber of Distainct Deservations 6 Implementation Maximum Desect 9.1 Maximum Desect 0.5 1.4 Implementation Maximum Deservations 1.4 1.4 1.4 1.4 Implementation 1.25 Cor	4	Dat	te/Time of Co	omputation	ProUCL 5.12	24/02/2021 3	3:14:23 PM									
6 Full Precision OFF 2 Confidence Coefficient 195%. 2000 8 Number of Bootstrap Operations 2000 9 0 0 9 0 0 11 0 0 12 0 0 13 Total Number of Obsurvations 26 Number of Distinct Observations 6 14 Number of Distinct Descriptions 26 Number of Distinct Non-Detects 1 16 Number of Distinct Non-Detects 1 Maximum Non-Detect 5 18 Ovariance Detects 3.4 Second Non-Detect 7.45 19 Maximum Non-Detect 0.58 Second Non-Detect 7.45 20 Mean Detects 3.4 Second Non-Detect 7.45 21 Mean of Logged Detects 0.588 Sb of Logged Detects 1.23 22 Mean of Logged Detects 0.588 Sb of Logged Detects 1.23 23 Second Not Normal at 5% Significance Level 1.23 1.23	5			From File	WorkSheet.	ds										
7 Confidence Coefficient 978 8 Number of Bootstrap Operations 2000 10 Point of Designations 2000 11 Ceneral Statistics 1 12 Ceneral Statistics 8 13 Total Number of Designations 26 Number of Distinct Observations 6 14 Number of Designations 26 Number of Distinct Observations 6 14 Number of Designations 28 Number of Distinct Observations 6 13 Mumber of Designations 28 Number of Distinct Observations 0 14 Mumber of Designations 28 Number of Distinct Observations 0 14 Mumber of Designations 5 Number of Distinct Observations 0 15 Mumber of Designations 5 Number of Distinct Observations 0 14 Mumber of Designations 5 Number of Distinct Observations 0 14 Mumber of Designations 5 Signations 0 0 15 Muma	6		Fu	II Precision	OFF											
8 Number of Bootstrap Operations 2000 10 8(a)P TEQ 11 Ceneral Statistics 12 Conservations 26 13 Total Number of Deservations 26 14 Number of Deservations 26 15 Number of Non-Detects 5 16 Mumber of Distinct Detects 5 17 Maximum Non-Detect 0.5 18 Variance Detects 14.85 19 Mean Detects 2.4 20 Median Detects 2.5 21 Mean Detects 0.58 22 Mean Detects 0.59 23 Mean Detects 0.598 24 Normal COF Test on Detects Only 25 Shapiro Wilk Critical Value 0.788 26 Sh% Shapiro Wilk Critical Value 0.788 Detected Data Nort Mormal at 5% Significance Level 27 Lillefors Test Statistic 0.325 Detected Data Nort Mormal at 5% Significance Level 28 Sh% Killephy Nulk Critical Value 0.325	7		Confidence	Coefficient	95%											
9 Biop TEQ 10 Biop TEQ 12 General Statistics 13 Total Number of Deservations 26 Number of Daisinct Observations 6 14 Number of Deservations 26 Number of Daisinct Observations 6 14 Number of Deservations 6 Number of Daisinct Observations 6 15 Number of Daisinct Detects 6 Number of Daisinct Observations 76.97 16 Minimum Detect 0.1 Maximum Non-Detects 76.97 19 Mean Detects 1.4 CV Detects 1.3 20 Mean Detects 0.59 SD of Logged Detects 1.45 21 Seveness Detects 0.598 SD of Logged Detects 1.45 22 Mean of Logged Detect 0.598 Detected Date Normal at 5% Significance Level 1.23 23 Seveness Dates 0.751 Shapiro Wilk GOF Test 2.24 24 Normal GOF Test on Detected Date Normal at 5% Significance Level 2.25 Detected Date Normal at 5% Significance Level	8	Number o	of Bootstrap	Operations	2000											
Image: PEQ Image: PEQ <thimage: peq<="" th=""> <thima< th=""><th>9</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thima<></thimage:>	9															
Internal of the second state second state of the second state second state second s	10	B(a)P TEQ														
International statistics Converted Statistics	11															
13 Total Number of Observations 26 Number of Number of Non-Detects 6 14 Number of Detects 5 Number of Non-Detects 20 15 Number of Distinct Detects 5 Number of Distinct Non-Detects 1.5 16 Minimum Detect 0.6 Minimum Non-Detects 7.5 18 Variance Detects 1.46 Percent Non-Detects 7.5 20 Mean Detects 3.4 SD Detects 3.85 21 Mean Detects 3.4 SD Detects 1.12 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Shapiro Wilk CPT Exit Shapiro Wilk COF Test 1.23 24 Normal GOF Test on Detects Only 1.23 1.23 25 Shapiro Wilk Critical Value 0.78 Detected Data Not Normal at 5% Significance Level 28 Strapin Wilk Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 5.37 33 KM Nom	12						General	Statistics								
14 Number of Discrets 6 Number of Discret Potents 20 15 Number of Discret Detects 5 Number of Discret Non-Detects 1 16 Marimum Non-Detect 0.6 Marimum Non-Detects 0.5 17 Maximum Non-Detects 7.6.93 76.93 18 Wariance Detects 3.4 Storent Non-Detects 7.6.93 20 Median Detects 3.4 Storent Non-Detects 1.3 21 Skowness Detects 0.58 Storent Non-Detects 1.3 22 Mean of Logged Detects 0.58 Storent Non-Detects 1.3 22 Mean of Logged Detects 0.58 Detected Data Not Normal at 5%. Significance Level 1.3 23 Stappiro Wilk Test Statistic 0.751 Stappiro Wilk GOF Test 1.3 24 Moment Of Test Statistic 0.325 Detected Data Not Normal at 5%. Significance Level 1.3 25 Stappiro Wilk Critical Value 0.32 Detected Data Not Normal at 5%. Significance Level 1.8 26 Detected Data Not Normal at 5%. Sign	13		r of Distinct (Observations	6											
Is Number of Distinct Detects 5 Number of Distinct Non-Detects 1 16 Minimum Detect 0.6 Minimum Non-Detects 0.5 17 Maximum Detects 9.1 Maximum Non-Detects 76.97 18 Variance Detects 14.86 Percent Non-Detects 76.97 20 Median Detects 1.25 CV Detects 1.13 21 Skowness Detects 0.599 Kurtosis Detects 1.25 22 Mean of Lagged Detects 0.599 Status 1.25 23 Skowness Detects 0.599 Status 1.25 24 Normal GOF Test on Detects Only 1.25 1.23 27 Lilliefors Test Statistic 0.781 Shapiro Wilk GOF Test 1.23 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 1.33 30 Detected Data Not Normal at 5% Significance Level 1.33 1.34 31 Kaplan-Meler (KM) Statistics using Normal Critical Value 0.325 Detected Data Not Normal at 5% Significance Lev	14				Numbe	r of Detects	6				Number of	Non-Detects	20			
Ib Minimum Detect 0.6 Minimum Non-Detect 0.5 17 Maximum Detect 9.1 Maximum Non-Detect 76.97 18 Wariance Detects 14.86 Percent Non-Detects 76.97 19 Mean Detects 1.24 CV Detects 1.13 21 Stewmess Detects 0.989 Kurbis Detects 1.23 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Vormal GOF Test on Detects Only 1.23 24 Normal GOF Test 0.781 Shapiro Wilk GOF Test 1.23 25 Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 29 29 Detected Data Not Normal at 5% Significance Level 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20	15			N	umber of Dist	inct Detects	5			Numbe	er of Distinct	Non-Detects	1			
17 Maximum Detect 9.1 Maximum Non-Detect 76.57 18 Variance Detects 14.86 Percent Non-Detects 76.97 20 Median Detects 3.4 SD Detects 3.85 20 Median Detects 0.989 Kurtosis Detects 1.13 21 Skewness Detects 0.989 Kurtosis Detects 1.45 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.42 23 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 2 26 Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.328 Detected Data Not Normal at 5% Significance Level 28 S% Lilliefors Critical Value 0.328 Detected Data Not Normal at 5% Significance Level 30 Significance Level 1.169 KM Standard Error of Maan 0.44 34 95% KM (pluc) 1.955 95% KM (ePaccentile Bootstrap) UCL 1.87 36 90% KM Chebyshev UCL 2.513 95% KM Cheby	16				Mini	mum Detect	0.6				Minimum	n Non-Detect	0.5			
18 Variance Detects 14.86 Percent Non-Detects 76.93 19 Mean Detects 3.4 SD Detects 3.83 20 Median Detects 1.25 CV Detects 1.13 21 Skewness Detects 0.399 Kurtosis Detects 1.145 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Normal GOF Test on Detects Only 1.23 24 Normal GOF Test on Detects Only 1.23 1.23 26 Shapiro Wilk Test Statistic 0.781 Shapiro Wilk GOF Test 1.23 27 Utiliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 1.43 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 1.43 30 KM Statistics using Normal Critical Values and other Nonparametric UCLs 1.43 1.43 31 Kapian-Meier (KM) Statistics using Normal Critical Values and other Nonparametric Bootstrap 1.0CL 1.43 33 GROB 95% KM (Bochy UCL 1.32 95%	17				Maxi	mum Detect	9.1				Maximum	n Non-Detect	0.5			
Instruction Mean Detects 3.4 SD Detects 3.85 20 Median Detects 1.25 CV Detects 1.145 21 Skewness Detects 0.989 Kurtosis Detects 1.145 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Normal GOF Test on Detects Only 1.23 1.23 24 Normal GOF Test on Detects Only 1.23 25 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 0.343 0.342 31 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 32 KM Mean 1.169 \$% Mt Standard Error of Mean 0.44 33 95% KM (Q) UCL 1.935 95% KM (Boctstrapt UCL) 1.83 36 90% KM Chebyshev UCL	18				Varia	nce Detects	14.86				Percent	Non-Detects	76.92%			
20 Median Detects 1.25 CV Detects 1.13 21 Skewness Detects 0.989 Kurtosis Detects 1.43 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Normal GOF Test on Detects Only Shapiro Wilk Critical Value 0.751 Shapiro Wilk GOF Test 1.25 26 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 1.23 27 Lilliefors Test Statistic 0.328 Detected Data Not Normal at 5% Significance Level 29 29 Detected Data Not Normal at 5% Significance Level 20	19				M	ean Detects	3.4					SD Detects	3.854			
21 Skewness Detects 0.989 Kurtosis Detects -1.45; 22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 23 Normal GOF Test on Detects Only 1.23 24 Normal GOF Test on Detects Only 1.23 25 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 0.44 30 KM Mean 1.169 KM Standard Error of Mean 0.44 31 Kapian-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 0.44 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 95% KM (t) UCL 1.906 95% KM (BCA) UCL 1.87 34 95% KM (t) UCL 1.906 95% KM Chebyshev UCL 5.67 35 90% KM Chebyshev UCL 2.513 <th>20</th> <th></th> <th></th> <th></th> <th>Med</th> <th>lian Detects</th> <th>1.25</th> <th></th> <th></th> <th></th> <th></th> <th>CV Detects</th> <th>1.134</th>	20				Med	lian Detects	1.25					CV Detects	1.134			
22 Mean of Logged Detects 0.598 SD of Logged Detects 1.23 24 Normal GOF Test on Detects Only	21				Skewn	ess Detects	0.989				Kurl	tosis Detects	-1.453			
23 Normal GOF Test on Detects Only 24 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.328 Lilliefors GOF Test 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 30 30 KM Mean 1.169 KM Standard Error of Mean 0.44 31 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.87 31 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM KD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (t) UCL 1.935 95% KM (Debushev UCL 3.87 35 95% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 5.62 38 38 397.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 39 Garma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.298 Kolmogorov-D	22				Mean of Log	ged Detects	0.598				SD of Log	ged Detects	1.237			
Normal GOF Test on Detects Only 25 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.325 Detected Data Not Normal at 5% Significance Level 28 Objected Data Not Normal at 5% Significance Level 0.325 Detected Data Not Normal at 5% Significance Level 30 Statistics using Normal Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 30 Kapian-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 0.44 31 Kapian-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 Gamma GOF 95% KM (Percentile Bootstrap) UCL 1.83 34 95% KM (chebyshev UCL 2.513 95% KM Chebyshev UCL 5.87 35 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 5.87 38 Gamma GOF Tests on Detected Observations Only 312 312	23															
25 Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test 26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.328 Detected Data Not Normal at 5% Significance Level 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 30 30 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 31 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (Boch) UCL 1.83 34 95% KM (2) UCL 1.906 95% KM (Botstrap) UCL 5.87 35 95% KM (2) UCL 2.513 95% KM Chebyshev UCL 5.62 38 Gamma GOF Tests on Detected Observations Only 3.12 5.62 39 Gamma GOF Tests on Detected Observations Only 3.42 5.62 41	24	4 Normal GOF Test on Detects Only														
26 5% Shapiro Wilk Critical Value 0.788 Detected Data Not Normal at 5% Significance Level 27 Lilliefors Test Statistic 0.328 Lilliefors COF Test 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 0.325 Detected Data Not Normal at 5% Significance Level 30 Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 0.44 31 Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 1.83 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (c) UCL 1.906 95% KM (Bootstrap tUCL 5.87 35 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 5.62 38 90% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 39 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distr	25	Shapiro Wilk Test Statistic 0.751 Shapiro Wilk GOF Test														
27 Lilliefors Test Statistic 0.328 Lilliefors GOF Test 28 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 30 30 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 31 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (c) UCL 1.935 95% KM Bootstrap UCL 5.87 36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38	26			5% S	hapiro Wilk C	ritical Value	0.788		Detected Dat	ta Not Norm	al at 5% Sign	ificance Leve	1			
1 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level 29 Detected Data Not Normal at 5% Significance Level 30 31 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (t) UCL 1.935 95% KM (Percentile Bootstrap) UCL 5.87 35 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38 99% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 39 Gamma GOF Tests on Detected Observations Only 5.62 5.62 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 5.62 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 44 42 K-S Test Statistic 0.298 Kolmogorov-Smimov GOF 5% K-S Cr	27				Lilliefors T	est Statistic	0.328			Lilliefors	GOF Test					
29 Detected Data Not Normal at 5% Significance Level 30	28			5	5% Lilliefors C	ritical Value	0.325		Detected Dat	ta Not Norm	al at 5% Sign	ificance Leve				
30 31 Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 32 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (t) UCL 1.935 95% KM (Percentile Bootstrap) UCL 5.87 35 95% KM (z) UCL 1.906 95% KM Debyshev UCL 5.87 36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 98% KM Chebyshev UCL 5.62 38	29	9 Detected Data Not Normal at 5% Significance Level														
Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 31 KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (j) UCL 1.935 95% KM (Percentile Bootstrap) UCL 1.87 35 95% KM (z) UCL 1.906 95% KM Chebyshev UCL 3.12 36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38	30															
KM Mean 1.169 KM Standard Error of Mean 0.44 33 KM SD 2.086 95% KM (BCA) UCL 1.83 34 95% KM (1) UCL 1.935 95% KM (Percentile Bootstrap) UCL 5.87 35 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38 99 Gamma GOF Tests on Detected Observations Only 5.62 38 99 Gamma GOF Tests on Detected Observations Only 5.62 39 Gamma GOF Test on Detected Observations Only 5.62 38 0.717 Detected data appear Gamma Distributed at 5% Significance Level 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.98 Kolmogorov-Smirnov GOF 5 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 5.90 45 0 3.4 <th>31</th> <th></th> <th></th> <th>Kaplan-</th> <th>Meier (KM) S</th> <th>tatistics usi</th> <th>ng Normal C</th> <th>ritical Value</th> <th>s and other</th> <th>Nonparame</th> <th>tric UCLs</th> <th></th> <th></th>	31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs					
Image: scale in the second s	32					KM Mean	1.169			KI	VI Standard E	rror of Mean	0.448			
34 95% KM (t) UCL 1.935 95% KM (Percentile Bootstrap) UCL 1.87 35 95% KM (z) UCL 1.906 95% KM Bootstrap t UCL 5.87 36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38	33					KM SD	2.086				95% KN	I (BCA) UCL	1.831			
35 95% KM (z) UCL 1.906 95% KM Bootstrapt UCL 5.87 36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38	.34				95%	KM (t) UCL	1.935		95% KM (Percentile Bootstrap) U							
36 90% KM Chebyshev UCL 2.513 95% KM Chebyshev UCL 3.12 37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38 39 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 44 45 Gamma Statistics on Detected Data Only 44 46 Gamma Statistics on Detected Data Only 45 47 k hat (MLE) 3.655 Theta scorrected MLE) 5.90 48 Theta hat (MLE) 3.655 Theta scorrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 5	35				95%	KM (z) UCL	1.906			95% KM Bootstrap t UCL						
37 97.5% KM Chebyshev UCL 3.967 99% KM Chebyshev UCL 5.62 38 39 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 44 45 Gamma Statistics on Detected Data Only 47 46 Gamma Statistics on Detected Data Only 48 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.590 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected MLE) 5.90 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 6.91	36				90% KM Chel	byshev UCL	2.513				95% KM Che	byshev UCL	3.122			
38 39 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 44 44 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45	37			97	.5% KM Chel	byshev UCL	3.967				99% KM Che	byshev UCL	5.627			
Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 44 44 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45	38															
40 A-D Test Statistic 0.684 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 44 45 Gamma Statistics on Detected Data Only 45 46 Gamma Statistics on Detected Data Only 0.57 48 Theta hat (MLE) 0.93 k star (bias corrected MLE) 0.57 49 nu hat (MLE) 11.16 nu star (bias corrected MLE) 5.90 50 Mean (detects) 3.4 54 55 51 52 Gamma ROS Statistics using Imputed Non-Detects 6.91 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 50 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 50	39				G	amma GOF	Tests on De	etected Obs	ervations Or	ly						
41 5% A-D Critical Value 0.717 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 0.342 Detected data appear Gamma Distributed at 5% Significance Level 45 6 Gamma Statistics on Detected Data Only 0.57 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected MLE) 5.90 50 Mean (detects) 3.4 51 52 53 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 50% NDs with many tied observations at multiple DLs 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 50% 50% 50%	40				A-D T	est Statistic	0.684		A	nderson-Da	rling GOF Te	est				
42 K-S Test Statistic 0.298 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45 Gamma Statistics on Detected Data Only 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 Mean (detects) 3.4 51 Statistics using Imputed Non-Detects 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	41				5% A-D C	ritical Value	0.717	Detecte	d data appea	ar Gamma D	istributed at {	5% Significan	ce Level			
12 5% K-S Critical Value 0.342 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45 45 Gamma Statistics on Detected Data Only 6 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 60000	42				K-S T	est Statistic	0.298		H	Kolmogorov	Smirnov GC	F				
10 Detected data appear Gamma Distributed at 5% Significance Level 44 Oetected data appear Gamma Distributed at 5% Significance Level 45 45 46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 0.93 48 Theta hat (MLE) 3.655 49 nu hat (MLE) 11.16 50 Mean (detects) 3.4 51 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	43				5% K-S C	ritical Value	0.342	Detecte	d data appea	ar Gamma D	istributed at §	5% Significan	ce Level			
45 46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	44				Detected	data appea	r Gamma Di	stributed at	5% Significa	nce Level						
46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	45															
47 k hat (MLE) 0.93 k star (bias corrected MLE) 0.57 48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	46	-				Gamma	Statistics or	Detected D	Data Only							
48 Theta hat (MLE) 3.655 Theta star (bias corrected MLE) 5.90 49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	47					k hat (MLE)	0.93			k	star (bias co	rrected MLE)	0.576			
49 nu hat (MLE) 11.16 nu star (bias corrected) 6.91 50 Mean (detects) 3.4 51	48				Thet	a hat (MLE)	3.655			Theta	star (bias co	rrected MLE)	5.901			
S0 Mean (detects) 3.4 50 Gamma ROS Statistics using Imputed Non-Detects 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	<u>4</u> 0				n	u hat (MLE)	11.16				nu star (bia	as corrected)	6.914			
51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs CDOC may not be used when data set has > 50% NDs with many tied observations at multiple DLs	50				Me	an (detects)	3.4									
Gamma ROS Statistics using Imputed Non-Detects 52 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 53 GROS may not be used when data set has > 10% non-peters	51						I	1								
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	52				G	amma ROS	Statistics u	sing Impute	d Non-Detec	ts						
	52			GROS may	/ not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs					
נאטא may not be used when kstar or detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)	54		GROS may	y not be used	d when kstar o	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ize is small (e	e.g., <15-20)				

	А	В	С	D	E		F	G	Н		J	K	L			
55			Fo	or such situ	ations, GR	OS r	method may	yield incorre	ect values o	of UCLs and E	TVs					
56					I his is es	peci	ally true whe	en the sampl	e size is sr	nall.						
57		For gar	nma distribut	ed detecte	ed data, BT	vsa	nd UCLs ma	iy be compu	ted using g	amma distrib	ition on KM e	estimates	0 700			
58					Mauin	ium	0.01					Mean	0.792			
59					waxim	ium en	9.1						0.01			
60					k hat (M		0.227		0.227							
61				т	heta hat (M		3 485									
62				•	nu hat (M		11 82		11 79							
63			Adiusted	Level of S) (β)	0.0398						11.70			
64		App	proximate Ch	i Square V	alue (11.79	. α)	5.091			Adjusted C	ni Square Va	lue (11.79, β)	4.802			
60		95% Gamma	Approximat	e UCL (us	e when n>=	50)	1.835		95% (- Gamma Adjus	ted UCL (use	e when n<50)	1.946			
67						,				-						
68					Estimates	of G	amma Para	meters usin	g KM Estin	nates						
69					Mean (ł	(M)	1.169					SD (KM)	2.086			
70					Variance (ł	(M)	4.35				SEd	of Mean (KM)	0.448			
71					k hat (ł	(M)	0.314					k star (KM)	0.304			
72					nu hat (ł	(M)	16.34					nu star (KM)	15.79			
73					theta hat (P	(M)	3.72				th	eta star (KM)	3.85			
74			80%	6 gamma p	percentile (ł	(M)	1.798			90	% gamma pe	ercentile (KM)	3.443			
75			95%	6 gamma p	percentile (F	(M)	5.328			99	% gamma pe	ercentile (KM)	10.22			
76																
77					Ga	mm	a Kaplan-M	eier (KM) S	tatistics							
78		Арр	proximate Ch	i Square V	alue (15.79	, α)	7.815			Adjusted C	ni Square Va	lue (15.79, β)	7.445			
79	95%	Gamma Ap	proximate KN	/I-UCL (us	e when n>=	50)	2.363		95% Gam	ma Adjusted	KM-UCL (use	e when n<50)	2.48			
80								ate ate d Ob		Only						
81				honiro Wil	Lognormal	GU			servations	Chiy Shanira M		•				
82			5% 9	hapiro Will		Suc	0.815	Dot	toctod Data		ormal at 5% (l Significanco I	ovol			
83			5%3		s Test Stati	stic	0.78	De					evei			
84			5		s Critical Va	alue	0.20	Det	tected Data		ormal at 5% s	Significance I	evel			
85				De	etected Dat	a an	pear Logno	rmal at 5% Significance Level								
86																
87					Lognormal	ROS	S Statistics	Using Imput	ed Non-De	tects						
00 80				Mean in	Original Sc	ale	0.817				Mean	in Log Scale	-3.442			
90				SD in	Original So	ale	2.249				SD	in Log Scale	3			
91		95% t l	JCL (assume	s normalit	y of ROS da	ata)	1.57			95%	Percentile B	ootstrap UCL	1.544			
92			1	95% BCA	Bootstrap L	JCL	1.843				95% Bo	otstrap t UCL	4.981			
93				95% H-L	ICL (Log R	DS)	87.81									
94																
95			Statis	stics using	KM estima	ites	on Logged [Data and As	suming Lo	gnormal Dist	ibution					
96				KM	Mean (logg	ed)	-0.395				К	M Geo Mean	0.674			
97				K	M SD (logg	ed)	0.768			95%	Critical H Va	lue (KM-Log)	2.228			
98			KM Standa	rd Error of	Mean (logg	ed)	0.165	95% H-UCL (KM -Log)								
99				K	M SD (logg	ed)	0.768			95%	Critical H Va	lue (KM-Log)	2.228			
100			KM Standa	rd Error of	Mean (logg	ed)	0.165									
101																
102				lormol			DL/2 S	ເຜເເຣເເດຣ			Tronoforme					
103			UL/21	Mean in	Original	ماد	רדם ח				Maan	in Log Scolo	-0 0.00			
104				SD in	Original Sc		2 102						1 016			
105			95% + 1		mes norma	litv)	1 711				<u>محم</u>	6 H-Stat LICI	1 107			
106			DI /2	is not a re	commende	d m	ethod. provid	ded for com	parisons a	nd historical r	easons		1.107			
107							, p									
ιUŏ																

	А	В	С	D	Е	F	G	Н		J	K	L		
109					Nonparame	etric Distribu	tion Free UC	CL Statistics						
110				Detected	Data appea	r Gamma Di	stributed at {	5% Significa	nce Level					
111														
112		Suggested UCL to Use												
113	Adjusted KI	Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1)												
114														
115	١	Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL			
116			F	Recommenda	tions are ba	sed upon dat	a size, data (distribution, a	and skewnes	S.				
117		These record	mmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006).			
118	Ho	wever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistic	ian.		
119														

Appendix I

Data Quality Assessment

Appendix I Data Quality Assessment Meadowbank Public School, Ryde

I1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table I1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other filed QC samples are included at the end of this appendix.

ltem	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD Refer to Table I1.1.	PC
Inter-laboratory replicates	5% of primary samples; <30% RPD Refer to Table I1.1.	PC
Trip Spikes	1 per sampling event; 60-140% recovery <i>Refer to Table I1.2.</i>	С
Trip Blanks	1 per sampling event; <pql <i>Refer to Table I1.2.</i></pql 	С
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table I1:	Field and Laboratory	/ Quality	/ Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in the summary results tables. The exceedances are not, however, considered to be of concern given that:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- One of the replicate pairs (BH3/BD5) was collected from fill soils which by its nature is heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA / QC parameters met the DQIs.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

I2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement						
Completeness	Systematic and selected target locations sampled.						
	Preparation of borehole logs, sample location plan and chain of custody records.						
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.						
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).						
	Completion of chain of custody (COC) documentation.						
	NATA accredited laboratory results certificates provided by the laboratory.						
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section I1.1.						
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.						
	Experienced samplers used.						
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.						
	Satisfactory results for field and laboratory QC samples.						
Representativeness	Target media sampled.						
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.						
	Samples were extracted and analysed within holding times.						
	Samples were analysed in accordance with the COC.						
Precision	Field staff followed standard operating procedures.						
	Acceptable RPD between original samples and replicates.						
	Satisfactory results for all other field and laboratory QC samples.						
Accuracy	Field staff followed standard operating procedures.						
	Satisfactory results for all field and laboratory QC samples.						

Table I2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

D3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Douglas Partners Pty Ltd

Table I1.1: Relative Percentage Difference Results

						Me	etals						TI	RH			BTEX				РАН		
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Intra-labora	a-laboratory Replicate																						
BD5/20200121	1 - 1.1 m	21/01/2021	<4	<0.4	14	9	17	<0.1	6	8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	<0.05	<0.5
BH3	1 - 1.1 m	21/01/2021	4	<0.4	28	16	18	0.2	10	15	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5
		Difference	0	0	14	7	1	0.1	4	7	-	-	-	-	-	-	-	-	-	-	0	0	0
		RPD	0%	0%	67%	56%	6%	67%	50%	61%	-	-	-	-	-	-	-	-	-	-	0%	0%	0%
Inter-labora	tory Replicat	te																					
BD3/20210121	0.4 - 0.5 m	21/01/2021	9	<1	16	15	27	<0.1	8	22	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1	<0.5	<0.5
BH6	0.4 - 0.5 m	21/01/2021	<4	<0.4	9	9	17	<0.1	5	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.05	<0.5
		Difference	5	0	7	6	10	0	3	9	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	77%	0%	56%	50%	45%	0%	46%	51%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table I1.2: Trip Spike and Blank Results – Soils

Sample ID	Units	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS1	% Recovery	102	103	104	102	103
TB1	mg/kg	<0.2	<0.5	<1	<1	<2